mirror of https://github.com/wb2osz/direwolf.git
Added derived code to calc/apply BCH codes.
This commit is contained in:
parent
26ac27bf57
commit
d898d1b4c4
|
@ -0,0 +1,589 @@
|
||||||
|
/*
|
||||||
|
* File: bch3.c
|
||||||
|
* Title: Encoder/decoder for binary BCH codes in C (Version 3.1)
|
||||||
|
* Author: Robert Morelos-Zaragoza
|
||||||
|
* Date: August 1994
|
||||||
|
* Revised: June 13, 1997
|
||||||
|
*
|
||||||
|
* =============== Encoder/Decoder for binary BCH codes in C =================
|
||||||
|
*
|
||||||
|
* Version 1: Original program. The user provides the generator polynomial
|
||||||
|
* of the code (cumbersome!).
|
||||||
|
* Version 2: Computes the generator polynomial of the code.
|
||||||
|
* Version 3: No need to input the coefficients of a primitive polynomial of
|
||||||
|
* degree m, used to construct the Galois Field GF(2**m). The
|
||||||
|
* program now works for any binary BCH code of length such that:
|
||||||
|
* 2**(m-1) - 1 < length <= 2**m - 1
|
||||||
|
*
|
||||||
|
* Note: You may have to change the size of the arrays to make it work.
|
||||||
|
*
|
||||||
|
* The encoding and decoding methods used in this program are based on the
|
||||||
|
* book "Error Control Coding: Fundamentals and Applications", by Lin and
|
||||||
|
* Costello, Prentice Hall, 1983.
|
||||||
|
*
|
||||||
|
* Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c'
|
||||||
|
* did not work for lengths other than 2**m-1 which led to this new version.
|
||||||
|
* Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder
|
||||||
|
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The
|
||||||
|
* previous version of the BCH encoder/decoder in C, 'bch2.c', was written by
|
||||||
|
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92.
|
||||||
|
*
|
||||||
|
* NOTE:
|
||||||
|
* The author is not responsible for any malfunctioning of
|
||||||
|
* this program, nor for any damage caused by it. Please include the
|
||||||
|
* original program along with these comments in any redistribution.
|
||||||
|
*
|
||||||
|
* For more information, suggestions, or other ideas on implementing error
|
||||||
|
* correcting codes, please contact me at:
|
||||||
|
*
|
||||||
|
* Robert Morelos-Zaragoza
|
||||||
|
* 5120 Woodway, Suite 7036
|
||||||
|
* Houston, Texas 77056
|
||||||
|
*
|
||||||
|
* email: r.morelos-zaragoza@ieee.org
|
||||||
|
*
|
||||||
|
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
|
||||||
|
* You may implement this program for any non-commercial application. You may
|
||||||
|
* also implement this program for commercial purposes, provided that you
|
||||||
|
* obtain my written permission. Any modification of this program is covered
|
||||||
|
* by this copyright.
|
||||||
|
*
|
||||||
|
* == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. ==
|
||||||
|
*
|
||||||
|
* m = order of the Galois field GF(2**m)
|
||||||
|
* n = 2**m - 1 = size of the multiplicative group of GF(2**m)
|
||||||
|
* length = length of the BCH code
|
||||||
|
* t = error correcting capability (max. no. of errors the code corrects)
|
||||||
|
* d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1
|
||||||
|
* k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code
|
||||||
|
* p[] = coefficients of a primitive polynomial used to generate GF(2**m)
|
||||||
|
* g[] = coefficients of the generator polynomial, g(x)
|
||||||
|
* alpha_to [] = log table of GF(2**m)
|
||||||
|
* index_of[] = antilog table of GF(2**m)
|
||||||
|
* data[] = information bits = coefficients of data polynomial, i(x)
|
||||||
|
* bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x)
|
||||||
|
* numerr = number of errors
|
||||||
|
* errpos[] = error positions
|
||||||
|
* recd[] = coefficients of the received polynomial
|
||||||
|
* decerror = number of decoding errors (in _message_ positions)
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
#include "bch.h"
|
||||||
|
|
||||||
|
int bch_init(bch_t *bch, int m, int length, int t) {
|
||||||
|
|
||||||
|
int p[21], n;
|
||||||
|
|
||||||
|
if (bch == NULL) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (m < 2 || m > 20) {
|
||||||
|
return -2;
|
||||||
|
}
|
||||||
|
|
||||||
|
bch->m = m;
|
||||||
|
bch->length = length;
|
||||||
|
bch->t = t;
|
||||||
|
|
||||||
|
for (int i=1; i<m; i++) {
|
||||||
|
p[i] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
p[0] = p[m] = 1;
|
||||||
|
if (m == 2) p[1] = 1;
|
||||||
|
else if (m == 3) p[1] = 1;
|
||||||
|
else if (m == 4) p[1] = 1;
|
||||||
|
else if (m == 5) p[2] = 1;
|
||||||
|
else if (m == 6) p[1] = 1;
|
||||||
|
else if (m == 7) p[1] = 1;
|
||||||
|
else if (m == 8) p[4] = p[5] = p[6] = 1;
|
||||||
|
else if (m == 9) p[4] = 1;
|
||||||
|
else if (m == 10) p[3] = 1;
|
||||||
|
else if (m == 11) p[2] = 1;
|
||||||
|
else if (m == 12) p[3] = p[4] = p[7] = 1;
|
||||||
|
else if (m == 13) p[1] = p[3] = p[4] = 1;
|
||||||
|
else if (m == 14) p[1] = p[11] = p[12] = 1;
|
||||||
|
else if (m == 15) p[1] = 1;
|
||||||
|
else if (m == 16) p[2] = p[3] = p[5] = 1;
|
||||||
|
else if (m == 17) p[3] = 1;
|
||||||
|
else if (m == 18) p[7] = 1;
|
||||||
|
else if (m == 19) p[1] = p[5] = p[6] = 1;
|
||||||
|
else if (m == 20) p[3] = 1;
|
||||||
|
printf("p(x) = ");
|
||||||
|
|
||||||
|
n = 1;
|
||||||
|
for (int i = 0; i <= m; i++) {
|
||||||
|
n *= 2;
|
||||||
|
printf("%1d", p[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
n = n / 2 - 1;
|
||||||
|
bch->n = n;
|
||||||
|
int ninf = (n + 1) / 2 - 1;
|
||||||
|
|
||||||
|
if (length < ninf || length > n) {
|
||||||
|
return -3;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Generate field GF(2**m) from the irreducible polynomial p(X) with
|
||||||
|
* coefficients in p[0]..p[m].
|
||||||
|
*
|
||||||
|
* Lookup tables:
|
||||||
|
* index->polynomial form: alpha_to[] contains j=alpha^i;
|
||||||
|
* polynomial form -> index form: index_of[j=alpha^i] = i
|
||||||
|
*
|
||||||
|
* alpha=2 is the primitive element of GF(2**m)
|
||||||
|
*/
|
||||||
|
register int i, mask;
|
||||||
|
|
||||||
|
bch->alpha_to = malloc(n * sizeof(int));
|
||||||
|
bch->index_of = malloc(n * sizeof(int));
|
||||||
|
|
||||||
|
mask = 1;
|
||||||
|
bch->alpha_to[m] = 0;
|
||||||
|
for (int i = 0; i < m; i++) {
|
||||||
|
bch->alpha_to[i] = mask;
|
||||||
|
bch->index_of[bch->alpha_to[i]] = i;
|
||||||
|
if (p[i] != 0)
|
||||||
|
bch->alpha_to[m] ^= mask;
|
||||||
|
mask <<= 1;
|
||||||
|
}
|
||||||
|
bch->index_of[bch->alpha_to[m]] = m;
|
||||||
|
mask >>= 1;
|
||||||
|
for (int i = m + 1; i < n; i++) {
|
||||||
|
if (bch->alpha_to[i - 1] >= mask)
|
||||||
|
bch->alpha_to[i] = bch->alpha_to[m] ^ ((bch->alpha_to[i - 1] ^ mask) << 1);
|
||||||
|
else
|
||||||
|
bch->alpha_to[i] = bch->alpha_to[i - 1] << 1;
|
||||||
|
bch->index_of[bch->alpha_to[i]] = i;
|
||||||
|
}
|
||||||
|
bch->index_of[0] = -1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute the generator polynomial of a binary BCH code. Fist generate the
|
||||||
|
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
|
||||||
|
* determine those cycle sets that contain integers in the set of (d-1)
|
||||||
|
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
|
||||||
|
* as the product of linear factors of the form (x+alpha^i), for every i in
|
||||||
|
* the above cycle sets.
|
||||||
|
*/
|
||||||
|
register int ii, jj, ll, kaux;
|
||||||
|
register int test, aux, nocycles, root, noterms, rdncy;
|
||||||
|
int cycle[1024][21], size[1024], min[1024], zeros[1024];
|
||||||
|
|
||||||
|
/* Generate cycle sets modulo n, n = 2**m - 1 */
|
||||||
|
cycle[0][0] = 0;
|
||||||
|
size[0] = 1;
|
||||||
|
cycle[1][0] = 1;
|
||||||
|
size[1] = 1;
|
||||||
|
jj = 1; /* cycle set index */
|
||||||
|
if (bch->m > 9) {
|
||||||
|
printf("Computing cycle sets modulo %d\n", bch->n);
|
||||||
|
printf("(This may take some time)...\n");
|
||||||
|
}
|
||||||
|
do {
|
||||||
|
/* Generate the jj-th cycle set */
|
||||||
|
ii = 0;
|
||||||
|
do {
|
||||||
|
ii++;
|
||||||
|
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % bch->n;
|
||||||
|
size[jj]++;
|
||||||
|
aux = (cycle[jj][ii] * 2) % bch->n;
|
||||||
|
} while (aux != cycle[jj][0]);
|
||||||
|
/* Next cycle set representative */
|
||||||
|
ll = 0;
|
||||||
|
do {
|
||||||
|
ll++;
|
||||||
|
test = 0;
|
||||||
|
for (ii = 1; ((ii <= jj) && (!test)); ii++)
|
||||||
|
/* Examine previous cycle sets */
|
||||||
|
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
|
||||||
|
if (ll == cycle[ii][kaux])
|
||||||
|
test = 1;
|
||||||
|
} while ((test) && (ll < (bch->n - 1)));
|
||||||
|
if (!(test)) {
|
||||||
|
jj++; /* next cycle set index */
|
||||||
|
cycle[jj][0] = ll;
|
||||||
|
size[jj] = 1;
|
||||||
|
}
|
||||||
|
} while (ll < (bch->n - 1));
|
||||||
|
nocycles = jj; /* number of cycle sets modulo n */
|
||||||
|
|
||||||
|
int d = 2 * t + 1;
|
||||||
|
|
||||||
|
/* Search for roots 1, 2, ..., d-1 in cycle sets */
|
||||||
|
kaux = 0;
|
||||||
|
rdncy = 0;
|
||||||
|
for (ii = 1; ii <= nocycles; ii++) {
|
||||||
|
min[kaux] = 0;
|
||||||
|
test = 0;
|
||||||
|
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
|
||||||
|
for (root = 1; ((root < d) && (!test)); root++)
|
||||||
|
if (root == cycle[ii][jj]) {
|
||||||
|
test = 1;
|
||||||
|
min[kaux] = ii;
|
||||||
|
}
|
||||||
|
if (min[kaux]) {
|
||||||
|
rdncy += size[min[kaux]];
|
||||||
|
kaux++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
noterms = kaux;
|
||||||
|
kaux = 1;
|
||||||
|
for (ii = 0; ii < noterms; ii++)
|
||||||
|
for (jj = 0; jj < size[min[ii]]; jj++) {
|
||||||
|
zeros[kaux] = cycle[min[ii]][jj];
|
||||||
|
kaux++;
|
||||||
|
}
|
||||||
|
|
||||||
|
bch-> k = length - rdncy;
|
||||||
|
|
||||||
|
if (bch->k<0)
|
||||||
|
{
|
||||||
|
printf("Parameters invalid!\n");
|
||||||
|
return -4;
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("This is a (%d, %d, %d) binary BCH code\n", bch->length, bch->k, d);
|
||||||
|
|
||||||
|
/* Compute the generator polynomial */
|
||||||
|
bch->g = malloc(rdncy * sizeof(int));
|
||||||
|
bch->g[0] = bch->alpha_to[zeros[1]];
|
||||||
|
bch->g[1] = 1; /* g(x) = (X + zeros[1]) initially */
|
||||||
|
for (ii = 2; ii <= rdncy; ii++) {
|
||||||
|
bch->g[ii] = 1;
|
||||||
|
for (jj = ii - 1; jj > 0; jj--)
|
||||||
|
if (bch->g[jj] != 0)
|
||||||
|
bch->g[jj] = bch->g[jj - 1] ^ bch->alpha_to[(bch->index_of[bch->g[jj]] + zeros[ii]) % bch->n];
|
||||||
|
else
|
||||||
|
bch->g[jj] = bch->g[jj - 1];
|
||||||
|
bch->g[0] = bch->alpha_to[(bch->index_of[bch->g[0]] + zeros[ii]) % bch->n];
|
||||||
|
}
|
||||||
|
printf("Generator polynomial:\ng(x) = ");
|
||||||
|
for (ii = 0; ii <= rdncy; ii++) {
|
||||||
|
printf("%d", bch->g[ii]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void generate_bch(bch_t *bch, int *data, int *bb) {
|
||||||
|
/*
|
||||||
|
* Compute redundacy bb[], the coefficients of b(x). The redundancy
|
||||||
|
* polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
|
||||||
|
* by the generator polynomial g(x).
|
||||||
|
*/
|
||||||
|
register int feedback;
|
||||||
|
|
||||||
|
for (int i = 0; i < bch->length - bch->k; i++)
|
||||||
|
bb[i] = 0;
|
||||||
|
for (int i = bch->k - 1; i >= 0; i--) {
|
||||||
|
feedback = data[i] ^ bb[bch->length - bch->k - 1];
|
||||||
|
if (feedback != 0) {
|
||||||
|
for (int j = bch->length - bch->k - 1; j > 0; j--)
|
||||||
|
if (bch->g[j] != 0)
|
||||||
|
bb[j] = bb[j - 1] ^ feedback;
|
||||||
|
else
|
||||||
|
bb[j] = bb[j - 1];
|
||||||
|
bb[0] = bch->g[0] && feedback;
|
||||||
|
} else {
|
||||||
|
for (int j = bch->length - bch->k - 1; j > 0; j--)
|
||||||
|
bb[j] = bb[j - 1];
|
||||||
|
bb[0] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int
|
||||||
|
apply_bch(bch_t *bch, int *recd)
|
||||||
|
/*
|
||||||
|
* Simon Rockliff's implementation of Berlekamp's algorithm.
|
||||||
|
*
|
||||||
|
* Assume we have received bits in recd[i], i=0..(n-1).
|
||||||
|
*
|
||||||
|
* Compute the 2*t syndromes by substituting alpha^i into rec(X) and
|
||||||
|
* evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) .
|
||||||
|
* Then we use the Berlekamp algorithm to find the error location polynomial
|
||||||
|
* elp[i].
|
||||||
|
*
|
||||||
|
* If the degree of the elp is >t, then we cannot correct all the errors, and
|
||||||
|
* we have detected an uncorrectable error pattern. We output the information
|
||||||
|
* bits uncorrected.
|
||||||
|
*
|
||||||
|
* If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp
|
||||||
|
* to get the roots, hence the inverse roots, the error location numbers.
|
||||||
|
* This step is usually called "Chien's search".
|
||||||
|
*
|
||||||
|
* If the number of errors located is not equal the degree of the elp, then
|
||||||
|
* the decoder assumes that there are more than t errors and cannot correct
|
||||||
|
* them, only detect them. We output the information bits uncorrected.
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
register int i, j, u, q, t2, count = 0, syn_error = 0;
|
||||||
|
int elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025];
|
||||||
|
int root[200], loc[200], err[1024], reg[201];
|
||||||
|
|
||||||
|
t2 = 2 * bch->t;
|
||||||
|
|
||||||
|
/* first form the syndromes */
|
||||||
|
printf("S(x) = ");
|
||||||
|
for (i = 1; i <= t2; i++) {
|
||||||
|
s[i] = 0;
|
||||||
|
for (j = 0; j < bch->length; j++)
|
||||||
|
if (recd[j] != 0)
|
||||||
|
s[i] ^= bch->alpha_to[(i * j) % bch->n];
|
||||||
|
if (s[i] != 0)
|
||||||
|
syn_error = 1; /* set error flag if non-zero syndrome */
|
||||||
|
/*
|
||||||
|
* Note: If the code is used only for ERROR DETECTION, then
|
||||||
|
* exit program here indicating the presence of errors.
|
||||||
|
*/
|
||||||
|
/* convert syndrome from polynomial form to index form */
|
||||||
|
s[i] = bch->index_of[s[i]];
|
||||||
|
printf("%3d ", s[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
if (syn_error) { /* if there are errors, try to correct them */
|
||||||
|
/*
|
||||||
|
* Compute the error location polynomial via the Berlekamp
|
||||||
|
* iterative algorithm. Following the terminology of Lin and
|
||||||
|
* Costello's book : d[u] is the 'mu'th discrepancy, where
|
||||||
|
* u='mu'+1 and 'mu' (the Greek letter!) is the step number
|
||||||
|
* ranging from -1 to 2*t (see L&C), l[u] is the degree of
|
||||||
|
* the elp at that step, and u_l[u] is the difference between
|
||||||
|
* the step number and the degree of the elp.
|
||||||
|
*/
|
||||||
|
/* initialise table entries */
|
||||||
|
d[0] = 0; /* index form */
|
||||||
|
d[1] = s[1]; /* index form */
|
||||||
|
elp[0][0] = 0; /* index form */
|
||||||
|
elp[1][0] = 1; /* polynomial form */
|
||||||
|
for (i = 1; i < t2; i++) {
|
||||||
|
elp[0][i] = -1; /* index form */
|
||||||
|
elp[1][i] = 0; /* polynomial form */
|
||||||
|
}
|
||||||
|
l[0] = 0;
|
||||||
|
l[1] = 0;
|
||||||
|
u_lu[0] = -1;
|
||||||
|
u_lu[1] = 0;
|
||||||
|
u = 0;
|
||||||
|
|
||||||
|
do {
|
||||||
|
u++;
|
||||||
|
if (d[u] == -1) {
|
||||||
|
l[u + 1] = l[u];
|
||||||
|
for (i = 0; i <= l[u]; i++) {
|
||||||
|
elp[u + 1][i] = elp[u][i];
|
||||||
|
elp[u][i] = bch->index_of[elp[u][i]];
|
||||||
|
}
|
||||||
|
} else
|
||||||
|
/*
|
||||||
|
* search for words with greatest u_lu[q] for
|
||||||
|
* which d[q]!=0
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
q = u - 1;
|
||||||
|
while ((d[q] == -1) && (q > 0))
|
||||||
|
q--;
|
||||||
|
/* have found first non-zero d[q] */
|
||||||
|
if (q > 0) {
|
||||||
|
j = q;
|
||||||
|
do {
|
||||||
|
j--;
|
||||||
|
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
|
||||||
|
q = j;
|
||||||
|
} while (j > 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* have now found q such that d[u]!=0 and
|
||||||
|
* u_lu[q] is maximum
|
||||||
|
*/
|
||||||
|
/* store degree of new elp polynomial */
|
||||||
|
if (l[u] > l[q] + u - q)
|
||||||
|
l[u + 1] = l[u];
|
||||||
|
else
|
||||||
|
l[u + 1] = l[q] + u - q;
|
||||||
|
|
||||||
|
/* form new elp(x) */
|
||||||
|
for (i = 0; i < t2; i++)
|
||||||
|
elp[u + 1][i] = 0;
|
||||||
|
for (i = 0; i <= l[q]; i++)
|
||||||
|
if (elp[q][i] != -1)
|
||||||
|
elp[u + 1][i + u - q] =
|
||||||
|
bch->alpha_to[(d[u] + bch->n - d[q] + elp[q][i]) % bch->n];
|
||||||
|
for (i = 0; i <= l[u]; i++) {
|
||||||
|
elp[u + 1][i] ^= elp[u][i];
|
||||||
|
elp[u][i] = bch->index_of[elp[u][i]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
u_lu[u + 1] = u - l[u + 1];
|
||||||
|
|
||||||
|
/* form (u+1)th discrepancy */
|
||||||
|
if (u < t2) {
|
||||||
|
/* no discrepancy computed on last iteration */
|
||||||
|
if (s[u + 1] != -1)
|
||||||
|
d[u + 1] = bch->alpha_to[s[u + 1]];
|
||||||
|
else
|
||||||
|
d[u + 1] = 0;
|
||||||
|
for (i = 1; i <= l[u + 1]; i++)
|
||||||
|
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
|
||||||
|
d[u + 1] ^= bch->alpha_to[(s[u + 1 - i]
|
||||||
|
+ bch->index_of[elp[u + 1][i]]) % bch->n];
|
||||||
|
/* put d[u+1] into index form */
|
||||||
|
d[u + 1] = bch->index_of[d[u + 1]];
|
||||||
|
}
|
||||||
|
} while ((u < t2) && (l[u + 1] <= bch->t));
|
||||||
|
|
||||||
|
u++;
|
||||||
|
if (l[u] <= bch->t) {/* Can correct errors */
|
||||||
|
/* put elp into index form */
|
||||||
|
for (i = 0; i <= l[u]; i++)
|
||||||
|
elp[u][i] = bch->index_of[elp[u][i]];
|
||||||
|
|
||||||
|
printf("sigma(x) = ");
|
||||||
|
for (i = 0; i <= l[u]; i++)
|
||||||
|
printf("%3d ", elp[u][i]);
|
||||||
|
printf("\n");
|
||||||
|
printf("Roots: ");
|
||||||
|
|
||||||
|
/* Chien search: find roots of the error location polynomial */
|
||||||
|
for (i = 1; i <= l[u]; i++)
|
||||||
|
reg[i] = elp[u][i];
|
||||||
|
count = 0;
|
||||||
|
for (i = 1; i <= bch->n; i++) {
|
||||||
|
q = 1;
|
||||||
|
for (j = 1; j <= l[u]; j++)
|
||||||
|
if (reg[j] != -1) {
|
||||||
|
reg[j] = (reg[j] + j) % bch->n;
|
||||||
|
q ^= bch->alpha_to[reg[j]];
|
||||||
|
}
|
||||||
|
if (!q) { /* store root and error
|
||||||
|
* location number indices */
|
||||||
|
root[count] = i;
|
||||||
|
loc[count] = bch->n - i;
|
||||||
|
count++;
|
||||||
|
printf("%3d ", bch->n - i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
if (count == l[u]) {
|
||||||
|
/* no. roots = degree of elp hence <= t errors */
|
||||||
|
for (i = 0; i < l[u]; i++)
|
||||||
|
recd[loc[i]] ^= 1;
|
||||||
|
return l[u];
|
||||||
|
}
|
||||||
|
else { /* elp has degree >t hence cannot solve */
|
||||||
|
printf("Incomplete decoding: errors detected\n");
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return 0; // No errors
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* LEFT justified in hex */
|
||||||
|
void bytes_to_bits(int *bytes, int *bit_dest, int num_bits) {
|
||||||
|
for (int i = 0; i < num_bits; i++) {
|
||||||
|
int index = i / 8;
|
||||||
|
int bit_pos = 7 - (i % 8);
|
||||||
|
int bit_mask = 1 << bit_pos;
|
||||||
|
bit_dest[i] = (bytes[index] & bit_mask) != 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void dump_bch(bch_t *bch) {
|
||||||
|
printf("m: %d length: %d t: %d n: %d k: %d\n", bch->m, bch->length, bch->t, bch->n, bch->k);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define TEST_APPLY
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
int test[][8] = {
|
||||||
|
{ 0xb2, 0x17, 0xa2, 0xb9, 0x53, 0xdd, 0xc5, 0x52 }, /* perfect random test */
|
||||||
|
{ 0xf0, 0x5a, 0x6a, 0x6a, 0x01, 0x63, 0x33, 0xd0 }, /* g001-cut-lenthened_457.938M.wav */
|
||||||
|
{ 0xf0, 0x81, 0x52, 0x6b, 0x71, 0xa5, 0x63, 0x08 }, /* 1st in eotd_received_data */
|
||||||
|
/* 3 errors */ { 0xf0, 0x85, 0x50, 0x6a, 0x01, 0xe5, 0x6e, 0x84 }, /* 2nd in eotd_received_data */
|
||||||
|
/* fixed */ { 0xf0, 0x85, 0x50, 0x6a, 0x01, 0xe5, 0x06, 0x84 }, /* 2nd, but with the bits fixed */
|
||||||
|
{ 0xf0, 0x85, 0x59, 0x5a, 0x01, 0xe5, 0x6e, 0x84 }, /* 3rd */
|
||||||
|
{ 0xf1, 0x34, 0x50, 0x1a, 0x01, 0xe5, 0x66, 0xfe }, /* 4th */
|
||||||
|
{ 0xf0, 0xeb, 0x10, 0xea, 0x01, 0x6e, 0x54, 0x1c }, /* 5th */
|
||||||
|
{ 0xf0, 0xea, 0x5c, 0xea, 0x01, 0x6e, 0x55, 0x0e }, /* 6th */
|
||||||
|
{ 0xe0, 0x21, 0x10, 0x1a, 0x01, 0x32, 0xbc, 0xe4 }, /* Sun Mar 20 05:41:00 2022 */
|
||||||
|
{ 0xf0, 0x42, 0x50, 0x5b, 0xcf, 0xd5, 0x64, 0xe4 }, /* Sun Mar 20 12:58:43 2022 */
|
||||||
|
{ 0xf0, 0x8c, 0x10, 0xaa, 0x01, 0x73, 0x7b, 0x1a }, /* Sun Mar 20 13:35:48 2022 */
|
||||||
|
{ 0xf0, 0x8c, 0x10, 0xb1, 0xc0, 0xe0, 0x90, 0x64 }, /* Sun Mar 20 13:37:05 2022 */
|
||||||
|
{ 0xf0, 0x8c, 0x10, 0x6a, 0x01, 0x64, 0x7a, 0xe8 }, /* Sun Mar 20 13:37:48 2022 */
|
||||||
|
{ 0x50, 0x8c, 0x12, 0x6a, 0x01, 0x64, 0x7a, 0xe8 },
|
||||||
|
};
|
||||||
|
|
||||||
|
int bits[63];
|
||||||
|
bch_t bch;
|
||||||
|
|
||||||
|
bch_init(&bch, 6, 63, 3);
|
||||||
|
|
||||||
|
for (int count = 0; count < sizeof(test) / sizeof(*test); count++) {
|
||||||
|
bytes_to_bits(test[count], bits, 63);
|
||||||
|
#ifdef TEST_BYTES_TO_BITS
|
||||||
|
printf("ORIG pkt [%d]\n", count);
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
printf("%02x ", test[count][i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
printf("ORIG pkt[%d] bits\n", count);
|
||||||
|
for (int i = 0; i < 63; i++) {
|
||||||
|
printf("%d ", bits[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
#endif
|
||||||
|
#ifdef TEST_GENERATE
|
||||||
|
int bch_code[18];
|
||||||
|
generate_bch(&bch, bits, bch_code);
|
||||||
|
printf("generated BCH\n");
|
||||||
|
for (int i = 0; i < 18; i++) {
|
||||||
|
printf("%d ", bch_code[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
#endif
|
||||||
|
#ifdef TEST_APPLY
|
||||||
|
int recv[63];
|
||||||
|
// backwards, for now
|
||||||
|
for (int i = 0; i < 45; i++) {
|
||||||
|
recv[i + 18] = bits[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < 18; i++) {
|
||||||
|
recv[i] = bits[i + 45];
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("rearranged packet: ");
|
||||||
|
for (int i = 0; i < 63; i++) {
|
||||||
|
printf("%d ", recv[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
int corrected = apply_bch(&bch, recv);
|
||||||
|
|
||||||
|
printf("corrected [%d] packet: ", corrected);
|
||||||
|
for (int i = 0; i < 63; i++) {
|
||||||
|
printf("%d ", recv[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,22 @@
|
||||||
|
#ifndef __BCH_H
|
||||||
|
#define __BCH_H
|
||||||
|
|
||||||
|
struct bch {
|
||||||
|
int m; // 2^m - 1 is max length, n
|
||||||
|
int length; // Actual packet size
|
||||||
|
int n; // 2^m - 1
|
||||||
|
int k; // Length of data portion
|
||||||
|
int t; // Number of correctable bits
|
||||||
|
|
||||||
|
int *g; // Calculated polynomial of length n - k
|
||||||
|
int *alpha_to;
|
||||||
|
int *index_of;
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef struct bch bch_t;
|
||||||
|
|
||||||
|
int bch_init(bch_t *bch, int m, int length, int t);
|
||||||
|
|
||||||
|
void generate_bch(bch_t *bch, int *data, int *bb);
|
||||||
|
|
||||||
|
#endif
|
Loading…
Reference in New Issue