mirror of https://github.com/wb2osz/direwolf.git
Added beginnings of BCH processing.
This commit is contained in:
parent
3b17d45f5a
commit
26ac27bf57
|
@ -0,0 +1,677 @@
|
|||
/*
|
||||
* File: bch3.c
|
||||
* Title: Encoder/decoder for binary BCH codes in C (Version 3.1)
|
||||
* Author: Robert Morelos-Zaragoza
|
||||
* Date: August 1994
|
||||
* Revised: June 13, 1997
|
||||
*
|
||||
* =============== Encoder/Decoder for binary BCH codes in C =================
|
||||
*
|
||||
* Version 1: Original program. The user provides the generator polynomial
|
||||
* of the code (cumbersome!).
|
||||
* Version 2: Computes the generator polynomial of the code.
|
||||
* Version 3: No need to input the coefficients of a primitive polynomial of
|
||||
* degree m, used to construct the Galois Field GF(2**m). The
|
||||
* program now works for any binary BCH code of length such that:
|
||||
* 2**(m-1) - 1 < length <= 2**m - 1
|
||||
*
|
||||
* Note: You may have to change the size of the arrays to make it work.
|
||||
*
|
||||
* The encoding and decoding methods used in this program are based on the
|
||||
* book "Error Control Coding: Fundamentals and Applications", by Lin and
|
||||
* Costello, Prentice Hall, 1983.
|
||||
*
|
||||
* Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c'
|
||||
* did not work for lengths other than 2**m-1 which led to this new version.
|
||||
* Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder
|
||||
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The
|
||||
* previous version of the BCH encoder/decoder in C, 'bch2.c', was written by
|
||||
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92.
|
||||
*
|
||||
* NOTE:
|
||||
* The author is not responsible for any malfunctioning of
|
||||
* this program, nor for any damage caused by it. Please include the
|
||||
* original program along with these comments in any redistribution.
|
||||
*
|
||||
* For more information, suggestions, or other ideas on implementing error
|
||||
* correcting codes, please contact me at:
|
||||
*
|
||||
* Robert Morelos-Zaragoza
|
||||
* 5120 Woodway, Suite 7036
|
||||
* Houston, Texas 77056
|
||||
*
|
||||
* email: r.morelos-zaragoza@ieee.org
|
||||
*
|
||||
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
|
||||
* You may implement this program for any non-commercial application. You may
|
||||
* also implement this program for commercial purposes, provided that you
|
||||
* obtain my written permission. Any modification of this program is covered
|
||||
* by this copyright.
|
||||
*
|
||||
* == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. ==
|
||||
*
|
||||
* m = order of the Galois field GF(2**m)
|
||||
* n = 2**m - 1 = size of the multiplicative group of GF(2**m)
|
||||
* length = length of the BCH code
|
||||
* t = error correcting capability (max. no. of errors the code corrects)
|
||||
* d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1
|
||||
* k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code
|
||||
* p[] = coefficients of a primitive polynomial used to generate GF(2**m)
|
||||
* g[] = coefficients of the generator polynomial, g(x)
|
||||
* alpha_to [] = log table of GF(2**m)
|
||||
* index_of[] = antilog table of GF(2**m)
|
||||
* data[] = information bits = coefficients of data polynomial, i(x)
|
||||
* bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x)
|
||||
* numerr = number of errors
|
||||
* errpos[] = error positions
|
||||
* recd[] = coefficients of the received polynomial
|
||||
* decerror = number of decoding errors (in _message_ positions)
|
||||
*
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
int m, n, length, k, t, d;
|
||||
int p[21];
|
||||
int alpha_to[1048576], index_of[1048576], g[548576];
|
||||
int recd[1048576], data[1048576], bb[548576];
|
||||
int seed;
|
||||
int numerr, errpos[1024], decerror = 0;
|
||||
|
||||
int real_data[][45] = {
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
0,1,0,1,1,0,1,0,
|
||||
0,1,1,0,1,0,1,0,
|
||||
0,1,1,0,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
0,1,1,0,0},
|
||||
|
||||
// 0=f0 1=81 2=52 3=6b 4=71 5=a5 6=63 7=08
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
1,0,0,0,0,0,0,1,
|
||||
0,1,0,1,0,0,1,0,
|
||||
0,1,1,0,1,0,1,1,
|
||||
0,1,1,1,0,0,0,1,
|
||||
1,0,1,0,0},
|
||||
|
||||
// 0=f0 1=85 2=50 3=6a 4=01 5=e5 6=6e 7=84
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
1,0,0,0,0,1,0,1,
|
||||
0,1,0,1,0,0,0,0,
|
||||
0,1,1,0,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
1,1,1,0,0},
|
||||
|
||||
// 0=f0 1=85 2=59 3=5a 4=01 5=e5 6=6e 7=84
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
1,0,0,0,0,1,0,1,
|
||||
0,1,0,1,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
1,1,1,0,0},
|
||||
|
||||
// 0=f1 1=34 2=50 3=1a 4=01 5=e5 6=66 7=fe
|
||||
{ 1,1,1,1,0,0,0,1,
|
||||
0,0,1,1,0,1,0,0,
|
||||
0,1,0,1,0,0,0,0,
|
||||
0,0,0,1,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
1,1,1,0,0},
|
||||
// 0=f0 1=eb 2=10 3=ea 4=01 5=6e 6=54 7=1c
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
1,1,1,0,1,0,1,1,
|
||||
0,0,0,1,0,0,0,0,
|
||||
1,1,1,0,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
0,1,1,0,1},
|
||||
|
||||
// 0=f0 1=ea 2=5c 3=ea 4=01 5=6e 6=55 7=0e
|
||||
{ 1,1,1,1,0,0,0,0,
|
||||
1,1,1,0,1,0,1,0,
|
||||
0,1,0,1,1,1,0,0,
|
||||
1,1,1,0,1,0,1,0,
|
||||
0,0,0,0,0,0,0,1,
|
||||
0,1,1,0,1},
|
||||
};
|
||||
|
||||
int expected[][18] = {
|
||||
{ 0,1,1, 0,0,1,1, 0,0,1,1, 1,1,0,1, 0,0,0 },
|
||||
{ 1,0,1, 0,1,1,0, 0,0,1,1, 0,0,0,0, 1,0,0 },
|
||||
//orig { 1,0,1, 0,1,1,0, 1,1,1,0, 1,0,0,0, 0,1,0 },
|
||||
{ 1,0,1, 0,0,0,0, 0,1,1,0, 1,0,0,0, 0,1,0 }, // CORRECTED
|
||||
{ 1,0,1, 0,1,1,0, 1,1,1,0, 1,0,0,0, 0,1,0 },
|
||||
{ 1,0,1, 0,1,1,0, 0,1,1,0, 1,1,1,1, 1,1,1 },
|
||||
{ 1,1,0, 0,1,0,1, 0,1,0,0, 0,0,0,1, 1,1,0 },
|
||||
{ 1,1,0, 0,1,0,1, 0,1,0,1, 0,0,0,0, 1,1,1 },
|
||||
};
|
||||
|
||||
void
|
||||
read_p()
|
||||
/*
|
||||
* Read m, the degree of a primitive polynomial p(x) used to compute the
|
||||
* Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read
|
||||
* the code length.
|
||||
*/
|
||||
{
|
||||
int i, ninf;
|
||||
|
||||
printf("bch3: An encoder/decoder for binary BCH codes\n");
|
||||
printf("Copyright (c) 1994-7. Robert Morelos-Zaragoza.\n");
|
||||
printf("This program is free, please read first the copyright notice.\n");
|
||||
printf("\nFirst, enter a value of m such that the code length is\n");
|
||||
printf("2**(m-1) - 1 < length <= 2**m - 1\n\n");
|
||||
do {
|
||||
printf("Enter m (between 2 and 20): ");
|
||||
scanf("%d", &m);
|
||||
} while ( !(m>1) || !(m<21) );
|
||||
for (i=1; i<m; i++)
|
||||
p[i] = 0;
|
||||
p[0] = p[m] = 1;
|
||||
if (m == 2) p[1] = 1;
|
||||
else if (m == 3) p[1] = 1;
|
||||
else if (m == 4) p[1] = 1;
|
||||
else if (m == 5) p[2] = 1;
|
||||
else if (m == 6) p[1] = 1;
|
||||
else if (m == 7) p[1] = 1;
|
||||
else if (m == 8) p[4] = p[5] = p[6] = 1;
|
||||
else if (m == 9) p[4] = 1;
|
||||
else if (m == 10) p[3] = 1;
|
||||
else if (m == 11) p[2] = 1;
|
||||
else if (m == 12) p[3] = p[4] = p[7] = 1;
|
||||
else if (m == 13) p[1] = p[3] = p[4] = 1;
|
||||
else if (m == 14) p[1] = p[11] = p[12] = 1;
|
||||
else if (m == 15) p[1] = 1;
|
||||
else if (m == 16) p[2] = p[3] = p[5] = 1;
|
||||
else if (m == 17) p[3] = 1;
|
||||
else if (m == 18) p[7] = 1;
|
||||
else if (m == 19) p[1] = p[5] = p[6] = 1;
|
||||
else if (m == 20) p[3] = 1;
|
||||
printf("p(x) = ");
|
||||
n = 1;
|
||||
for (i = 0; i <= m; i++) {
|
||||
n *= 2;
|
||||
printf("%1d", p[i]);
|
||||
}
|
||||
printf("\n");
|
||||
n = n / 2 - 1;
|
||||
ninf = (n + 1) / 2 - 1;
|
||||
do {
|
||||
printf("Enter code length (%d < length <= %d): ", ninf, n);
|
||||
scanf("%d", &length);
|
||||
} while ( !((length <= n)&&(length>ninf)) );
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
generate_gf()
|
||||
/*
|
||||
* Generate field GF(2**m) from the irreducible polynomial p(X) with
|
||||
* coefficients in p[0]..p[m].
|
||||
*
|
||||
* Lookup tables:
|
||||
* index->polynomial form: alpha_to[] contains j=alpha^i;
|
||||
* polynomial form -> index form: index_of[j=alpha^i] = i
|
||||
*
|
||||
* alpha=2 is the primitive element of GF(2**m)
|
||||
*/
|
||||
{
|
||||
register int i, mask;
|
||||
|
||||
mask = 1;
|
||||
alpha_to[m] = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
alpha_to[i] = mask;
|
||||
index_of[alpha_to[i]] = i;
|
||||
if (p[i] != 0)
|
||||
alpha_to[m] ^= mask;
|
||||
mask <<= 1;
|
||||
}
|
||||
index_of[alpha_to[m]] = m;
|
||||
mask >>= 1;
|
||||
for (i = m + 1; i < n; i++) {
|
||||
if (alpha_to[i - 1] >= mask)
|
||||
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
|
||||
else
|
||||
alpha_to[i] = alpha_to[i - 1] << 1;
|
||||
index_of[alpha_to[i]] = i;
|
||||
}
|
||||
index_of[0] = -1;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
gen_poly()
|
||||
/*
|
||||
* Compute the generator polynomial of a binary BCH code. Fist generate the
|
||||
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
|
||||
* determine those cycle sets that contain integers in the set of (d-1)
|
||||
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
|
||||
* as the product of linear factors of the form (x+alpha^i), for every i in
|
||||
* the above cycle sets.
|
||||
*/
|
||||
{
|
||||
register int ii, jj, ll, kaux;
|
||||
register int test, aux, nocycles, root, noterms, rdncy;
|
||||
int cycle[1024][21], size[1024], min[1024], zeros[1024];
|
||||
|
||||
/* Generate cycle sets modulo n, n = 2**m - 1 */
|
||||
cycle[0][0] = 0;
|
||||
size[0] = 1;
|
||||
cycle[1][0] = 1;
|
||||
size[1] = 1;
|
||||
jj = 1; /* cycle set index */
|
||||
if (m > 9) {
|
||||
printf("Computing cycle sets modulo %d\n", n);
|
||||
printf("(This may take some time)...\n");
|
||||
}
|
||||
do {
|
||||
/* Generate the jj-th cycle set */
|
||||
ii = 0;
|
||||
do {
|
||||
ii++;
|
||||
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;
|
||||
size[jj]++;
|
||||
aux = (cycle[jj][ii] * 2) % n;
|
||||
} while (aux != cycle[jj][0]);
|
||||
/* Next cycle set representative */
|
||||
ll = 0;
|
||||
do {
|
||||
ll++;
|
||||
test = 0;
|
||||
for (ii = 1; ((ii <= jj) && (!test)); ii++)
|
||||
/* Examine previous cycle sets */
|
||||
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
|
||||
if (ll == cycle[ii][kaux])
|
||||
test = 1;
|
||||
} while ((test) && (ll < (n - 1)));
|
||||
if (!(test)) {
|
||||
jj++; /* next cycle set index */
|
||||
cycle[jj][0] = ll;
|
||||
size[jj] = 1;
|
||||
}
|
||||
} while (ll < (n - 1));
|
||||
nocycles = jj; /* number of cycle sets modulo n */
|
||||
|
||||
printf("Enter the error correcting capability, t: ");
|
||||
scanf("%d", &t);
|
||||
|
||||
d = 2 * t + 1;
|
||||
|
||||
/* Search for roots 1, 2, ..., d-1 in cycle sets */
|
||||
kaux = 0;
|
||||
rdncy = 0;
|
||||
for (ii = 1; ii <= nocycles; ii++) {
|
||||
min[kaux] = 0;
|
||||
test = 0;
|
||||
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
|
||||
for (root = 1; ((root < d) && (!test)); root++)
|
||||
if (root == cycle[ii][jj]) {
|
||||
test = 1;
|
||||
min[kaux] = ii;
|
||||
}
|
||||
if (min[kaux]) {
|
||||
rdncy += size[min[kaux]];
|
||||
kaux++;
|
||||
}
|
||||
}
|
||||
noterms = kaux;
|
||||
kaux = 1;
|
||||
for (ii = 0; ii < noterms; ii++)
|
||||
for (jj = 0; jj < size[min[ii]]; jj++) {
|
||||
zeros[kaux] = cycle[min[ii]][jj];
|
||||
kaux++;
|
||||
}
|
||||
|
||||
k = length - rdncy;
|
||||
|
||||
if (k<0)
|
||||
{
|
||||
printf("Parameters invalid!\n");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d);
|
||||
|
||||
/* Compute the generator polynomial */
|
||||
g[0] = alpha_to[zeros[1]];
|
||||
g[1] = 1; /* g(x) = (X + zeros[1]) initially */
|
||||
for (ii = 2; ii <= rdncy; ii++) {
|
||||
g[ii] = 1;
|
||||
for (jj = ii - 1; jj > 0; jj--)
|
||||
if (g[jj] != 0)
|
||||
g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];
|
||||
else
|
||||
g[jj] = g[jj - 1];
|
||||
g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];
|
||||
}
|
||||
printf("Generator polynomial:\ng(x) = ");
|
||||
for (ii = 0; ii <= rdncy; ii++) {
|
||||
printf("%d", g[ii]);
|
||||
if (ii && ((ii % 50) == 0))
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
encode_bch()
|
||||
/*
|
||||
* Compute redundacy bb[], the coefficients of b(x). The redundancy
|
||||
* polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
|
||||
* by the generator polynomial g(x).
|
||||
*/
|
||||
{
|
||||
register int i, j;
|
||||
register int feedback;
|
||||
|
||||
for (i = 0; i < length - k; i++)
|
||||
bb[i] = 0;
|
||||
for (i = k - 1; i >= 0; i--) {
|
||||
feedback = data[i] ^ bb[length - k - 1];
|
||||
if (feedback != 0) {
|
||||
for (j = length - k - 1; j > 0; j--)
|
||||
if (g[j] != 0)
|
||||
bb[j] = bb[j - 1] ^ feedback;
|
||||
else
|
||||
bb[j] = bb[j - 1];
|
||||
bb[0] = g[0] && feedback;
|
||||
} else {
|
||||
for (j = length - k - 1; j > 0; j--)
|
||||
bb[j] = bb[j - 1];
|
||||
bb[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
decode_bch()
|
||||
/*
|
||||
* Simon Rockliff's implementation of Berlekamp's algorithm.
|
||||
*
|
||||
* Assume we have received bits in recd[i], i=0..(n-1).
|
||||
*
|
||||
* Compute the 2*t syndromes by substituting alpha^i into rec(X) and
|
||||
* evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) .
|
||||
* Then we use the Berlekamp algorithm to find the error location polynomial
|
||||
* elp[i].
|
||||
*
|
||||
* If the degree of the elp is >t, then we cannot correct all the errors, and
|
||||
* we have detected an uncorrectable error pattern. We output the information
|
||||
* bits uncorrected.
|
||||
*
|
||||
* If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp
|
||||
* to get the roots, hence the inverse roots, the error location numbers.
|
||||
* This step is usually called "Chien's search".
|
||||
*
|
||||
* If the number of errors located is not equal the degree of the elp, then
|
||||
* the decoder assumes that there are more than t errors and cannot correct
|
||||
* them, only detect them. We output the information bits uncorrected.
|
||||
*/
|
||||
{
|
||||
register int i, j, u, q, t2, count = 0, syn_error = 0;
|
||||
int elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025];
|
||||
int root[200], loc[200], err[1024], reg[201];
|
||||
|
||||
t2 = 2 * t;
|
||||
|
||||
/* first form the syndromes */
|
||||
printf("S(x) = ");
|
||||
for (i = 1; i <= t2; i++) {
|
||||
s[i] = 0;
|
||||
for (j = 0; j < length; j++)
|
||||
if (recd[j] != 0)
|
||||
s[i] ^= alpha_to[(i * j) % n];
|
||||
if (s[i] != 0)
|
||||
syn_error = 1; /* set error flag if non-zero syndrome */
|
||||
/*
|
||||
* Note: If the code is used only for ERROR DETECTION, then
|
||||
* exit program here indicating the presence of errors.
|
||||
*/
|
||||
/* convert syndrome from polynomial form to index form */
|
||||
s[i] = index_of[s[i]];
|
||||
printf("%3d ", s[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
if (syn_error) { /* if there are errors, try to correct them */
|
||||
/*
|
||||
* Compute the error location polynomial via the Berlekamp
|
||||
* iterative algorithm. Following the terminology of Lin and
|
||||
* Costello's book : d[u] is the 'mu'th discrepancy, where
|
||||
* u='mu'+1 and 'mu' (the Greek letter!) is the step number
|
||||
* ranging from -1 to 2*t (see L&C), l[u] is the degree of
|
||||
* the elp at that step, and u_l[u] is the difference between
|
||||
* the step number and the degree of the elp.
|
||||
*/
|
||||
/* initialise table entries */
|
||||
d[0] = 0; /* index form */
|
||||
d[1] = s[1]; /* index form */
|
||||
elp[0][0] = 0; /* index form */
|
||||
elp[1][0] = 1; /* polynomial form */
|
||||
for (i = 1; i < t2; i++) {
|
||||
elp[0][i] = -1; /* index form */
|
||||
elp[1][i] = 0; /* polynomial form */
|
||||
}
|
||||
l[0] = 0;
|
||||
l[1] = 0;
|
||||
u_lu[0] = -1;
|
||||
u_lu[1] = 0;
|
||||
u = 0;
|
||||
|
||||
do {
|
||||
u++;
|
||||
if (d[u] == -1) {
|
||||
l[u + 1] = l[u];
|
||||
for (i = 0; i <= l[u]; i++) {
|
||||
elp[u + 1][i] = elp[u][i];
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
}
|
||||
} else
|
||||
/*
|
||||
* search for words with greatest u_lu[q] for
|
||||
* which d[q]!=0
|
||||
*/
|
||||
{
|
||||
q = u - 1;
|
||||
while ((d[q] == -1) && (q > 0))
|
||||
q--;
|
||||
/* have found first non-zero d[q] */
|
||||
if (q > 0) {
|
||||
j = q;
|
||||
do {
|
||||
j--;
|
||||
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
|
||||
q = j;
|
||||
} while (j > 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* have now found q such that d[u]!=0 and
|
||||
* u_lu[q] is maximum
|
||||
*/
|
||||
/* store degree of new elp polynomial */
|
||||
if (l[u] > l[q] + u - q)
|
||||
l[u + 1] = l[u];
|
||||
else
|
||||
l[u + 1] = l[q] + u - q;
|
||||
|
||||
/* form new elp(x) */
|
||||
for (i = 0; i < t2; i++)
|
||||
elp[u + 1][i] = 0;
|
||||
for (i = 0; i <= l[q]; i++)
|
||||
if (elp[q][i] != -1)
|
||||
elp[u + 1][i + u - q] =
|
||||
alpha_to[(d[u] + n - d[q] + elp[q][i]) % n];
|
||||
for (i = 0; i <= l[u]; i++) {
|
||||
elp[u + 1][i] ^= elp[u][i];
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
}
|
||||
}
|
||||
u_lu[u + 1] = u - l[u + 1];
|
||||
|
||||
/* form (u+1)th discrepancy */
|
||||
if (u < t2) {
|
||||
/* no discrepancy computed on last iteration */
|
||||
if (s[u + 1] != -1)
|
||||
d[u + 1] = alpha_to[s[u + 1]];
|
||||
else
|
||||
d[u + 1] = 0;
|
||||
for (i = 1; i <= l[u + 1]; i++)
|
||||
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
|
||||
d[u + 1] ^= alpha_to[(s[u + 1 - i]
|
||||
+ index_of[elp[u + 1][i]]) % n];
|
||||
/* put d[u+1] into index form */
|
||||
d[u + 1] = index_of[d[u + 1]];
|
||||
}
|
||||
} while ((u < t2) && (l[u + 1] <= t));
|
||||
|
||||
u++;
|
||||
if (l[u] <= t) {/* Can correct errors */
|
||||
/* put elp into index form */
|
||||
for (i = 0; i <= l[u]; i++)
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
|
||||
printf("sigma(x) = ");
|
||||
for (i = 0; i <= l[u]; i++)
|
||||
printf("%3d ", elp[u][i]);
|
||||
printf("\n");
|
||||
printf("Roots: ");
|
||||
|
||||
/* Chien search: find roots of the error location polynomial */
|
||||
for (i = 1; i <= l[u]; i++)
|
||||
reg[i] = elp[u][i];
|
||||
count = 0;
|
||||
for (i = 1; i <= n; i++) {
|
||||
q = 1;
|
||||
for (j = 1; j <= l[u]; j++)
|
||||
if (reg[j] != -1) {
|
||||
reg[j] = (reg[j] + j) % n;
|
||||
q ^= alpha_to[reg[j]];
|
||||
}
|
||||
if (!q) { /* store root and error
|
||||
* location number indices */
|
||||
root[count] = i;
|
||||
loc[count] = n - i;
|
||||
count++;
|
||||
printf("%3d ", n - i);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
if (count == l[u])
|
||||
/* no. roots = degree of elp hence <= t errors */
|
||||
for (i = 0; i < l[u]; i++)
|
||||
recd[loc[i]] ^= 1;
|
||||
else /* elp has degree >t hence cannot solve */
|
||||
printf("Incomplete decoding: errors detected\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
int i;
|
||||
|
||||
read_p(); /* Read m */
|
||||
generate_gf(); /* Construct the Galois Field GF(2**m) */
|
||||
gen_poly(); /* Compute the generator polynomial of BCH code */
|
||||
|
||||
#ifdef TEST
|
||||
for (int count = 0; count < sizeof(real_data) / sizeof(*real_data); count++) {
|
||||
memcpy(data, real_data[count], sizeof(*real_data));
|
||||
#else
|
||||
/* Randomly generate DATA */
|
||||
seed = 131073;
|
||||
srandom(seed);
|
||||
for (i = 0; i < k; i++)
|
||||
data[i] = ( random() & 65536 ) >> 16;
|
||||
#endif
|
||||
encode_bch(); /* encode data */
|
||||
|
||||
/*
|
||||
* recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x)
|
||||
*/
|
||||
for (i = 0; i < length - k; i++)
|
||||
recd[i] = bb[i];
|
||||
for (i = 0; i < k; i++)
|
||||
recd[i + length - k] = data[i];
|
||||
printf("Code polynomial:\nc(x) = ");
|
||||
for (i = 0; i < length; i++) {
|
||||
printf("%1d", recd[i]);
|
||||
if (i && ((i % 50) == 0))
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Enter the number of errors:\n");
|
||||
scanf("%d", &numerr); /* CHANNEL errors */
|
||||
printf("Enter error locations (integers between");
|
||||
printf(" 0 and %d): ", length-1);
|
||||
/*
|
||||
* recd[] are the coefficients of r(x) = c(x) + e(x)
|
||||
*/
|
||||
for (i = 0; i < numerr; i++)
|
||||
scanf("%d", &errpos[i]);
|
||||
if (numerr)
|
||||
for (i = 0; i < numerr; i++)
|
||||
recd[errpos[i]] ^= 1;
|
||||
printf("r(x) = ");
|
||||
for (i = 0; i < length; i++) {
|
||||
printf("%1d", recd[i]);
|
||||
if (i == length - k - 1) printf(" ");
|
||||
//if (i && ((i % 50) == 0))
|
||||
//printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
decode_bch(); /* DECODE received codeword recv[] */
|
||||
|
||||
/*
|
||||
* print out original and decoded data
|
||||
*/
|
||||
printf("Results:\n");
|
||||
printf("original data = ");
|
||||
for (i = 0; i < k; i++) {
|
||||
printf("%1d", data[i]);
|
||||
if (i && ((i % 50) == 0))
|
||||
printf("\n");
|
||||
}
|
||||
printf("\nrecovered data = ");
|
||||
for (i = length - k; i < length; i++) {
|
||||
printf("%1d", recd[i]);
|
||||
if ((i-length+k) && (((i-length+k) % 50) == 0))
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
int flag = 0;
|
||||
printf("n=%d, k=%d, length=%d\n", n, k, length);
|
||||
#ifdef TEST
|
||||
for (int jj = 0; jj < n - k; jj++) {
|
||||
if (expected[count][jj] != recd[jj]) {
|
||||
printf("bit %d: expected %d calc: %d\n", jj, expected[count][jj], recd[jj]);
|
||||
flag++;
|
||||
}
|
||||
}
|
||||
printf("%d ERRORS.\n", flag);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* DECODING ERRORS? we compare only the data portion
|
||||
*/
|
||||
for (i = length - k; i < length; i++)
|
||||
if (data[i - length + k] != recd[i])
|
||||
decerror++;
|
||||
if (decerror)
|
||||
printf("There were %d decoding errors in message positions\n", decerror);
|
||||
else
|
||||
printf("Succesful decoding\n");
|
||||
#ifdef TEST
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,620 @@
|
|||
/*
|
||||
* File: bch3.c
|
||||
* Title: Encoder/decoder for binary BCH codes in C (Version 3.1)
|
||||
* Author: Robert Morelos-Zaragoza
|
||||
* Date: August 1994
|
||||
* Revised: June 13, 1997
|
||||
*
|
||||
* =============== Encoder/Decoder for binary BCH codes in C =================
|
||||
*
|
||||
* Version 1: Original program. The user provides the generator polynomial
|
||||
* of the code (cumbersome!).
|
||||
* Version 2: Computes the generator polynomial of the code.
|
||||
* Version 3: No need to input the coefficients of a primitive polynomial of
|
||||
* degree m, used to construct the Galois Field GF(2**m). The
|
||||
* program now works for any binary BCH code of length such that:
|
||||
* 2**(m-1) - 1 < length <= 2**m - 1
|
||||
*
|
||||
* Note: You may have to change the size of the arrays to make it work.
|
||||
*
|
||||
* The encoding and decoding methods used in this program are based on the
|
||||
* book "Error Control Coding: Fundamentals and Applications", by Lin and
|
||||
* Costello, Prentice Hall, 1983.
|
||||
*
|
||||
* Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c'
|
||||
* did not work for lengths other than 2**m-1 which led to this new version.
|
||||
* Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder
|
||||
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The
|
||||
* previous version of the BCH encoder/decoder in C, 'bch2.c', was written by
|
||||
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92.
|
||||
*
|
||||
* NOTE:
|
||||
* The author is not responsible for any malfunctioning of
|
||||
* this program, nor for any damage caused by it. Please include the
|
||||
* original program along with these comments in any redistribution.
|
||||
*
|
||||
* For more information, suggestions, or other ideas on implementing error
|
||||
* correcting codes, please contact me at:
|
||||
*
|
||||
* Robert Morelos-Zaragoza
|
||||
* 5120 Woodway, Suite 7036
|
||||
* Houston, Texas 77056
|
||||
*
|
||||
* email: r.morelos-zaragoza@ieee.org
|
||||
*
|
||||
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
|
||||
* You may implement this program for any non-commercial application. You may
|
||||
* also implement this program for commercial purposes, provided that you
|
||||
* obtain my written permission. Any modification of this program is covered
|
||||
* by this copyright.
|
||||
*
|
||||
* == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. ==
|
||||
*
|
||||
* m = order of the Galois field GF(2**m)
|
||||
* n = 2**m - 1 = size of the multiplicative group of GF(2**m)
|
||||
* length = length of the BCH code
|
||||
* t = error correcting capability (max. no. of errors the code corrects)
|
||||
* d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1
|
||||
* k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code
|
||||
* p[] = coefficients of a primitive polynomial used to generate GF(2**m)
|
||||
* g[] = coefficients of the generator polynomial, g(x)
|
||||
* alpha_to [] = log table of GF(2**m)
|
||||
* index_of[] = antilog table of GF(2**m)
|
||||
* data[] = information bits = coefficients of data polynomial, i(x)
|
||||
* bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x)
|
||||
* numerr = number of errors
|
||||
* errpos[] = error positions
|
||||
* recd[] = coefficients of the received polynomial
|
||||
* decerror = number of decoding errors (in _message_ positions)
|
||||
*
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
int m, n, length, k, t, d;
|
||||
int p[21];
|
||||
int alpha_to[1048576], index_of[1048576], g[548576];
|
||||
int recd[1048576], data[1048576], bb[548576];
|
||||
int seed;
|
||||
int numerr, errpos[1024], decerror = 0;
|
||||
int orig_recd[1048576];
|
||||
|
||||
uint64_t packets[] = {
|
||||
|
||||
#define ALL_DATA
|
||||
/* GOOD TEST */ 0xb217a2b953ddc552, /* random example from bch3 program */
|
||||
#ifdef ALL_DATA
|
||||
0xf05a6a6a016333d0, /* g001-cut-lenthened_457.938M.wav */
|
||||
0xf081526b71a56308, /* 1st in eotd_received_data */
|
||||
/* 3 errors */ 0xf085506a01e56e84, /* 2nd in eotd_received_data */
|
||||
/* fixed */ 0xf085506a01e50684, /* 2nd, but with the bits fixed */
|
||||
#endif
|
||||
#ifdef ALL_DATA
|
||||
0xf085595a01e56e84, /* 3rd */
|
||||
0xf134501a01e566fe, /* 4th */
|
||||
0xf0eb10ea016e541c, /* 5th */
|
||||
0xf0ea5cea016e550e, /* 6th */
|
||||
0xe021101a0132bce4, /* Sun Mar 20 05:41:00 2022 */
|
||||
0xf042505bcfd564e4, /* Sun Mar 20 12:58:43 2022 */
|
||||
0xf08c10aa01737b1a, /* Sun Mar 20 13:35:48 2022 */
|
||||
0xf08c10b1c0e09064, /* Sun Mar 20 13:37:05 2022 */
|
||||
0xf08c106a01647ae8, /* Sun Mar 20 13:37:48 2022 */
|
||||
0x508c126a01647ae8,
|
||||
#endif
|
||||
};
|
||||
|
||||
void
|
||||
read_p()
|
||||
/*
|
||||
* Read m, the degree of a primitive polynomial p(x) used to compute the
|
||||
* Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read
|
||||
* the code length.
|
||||
*/
|
||||
{
|
||||
int i, ninf;
|
||||
|
||||
printf("bch3: An encoder/decoder for binary BCH codes\n");
|
||||
printf("Copyright (c) 1994-7. Robert Morelos-Zaragoza.\n");
|
||||
printf("This program is free, please read first the copyright notice.\n");
|
||||
printf("\nFirst, enter a value of m such that the code length is\n");
|
||||
printf("2**(m-1) - 1 < length <= 2**m - 1\n\n");
|
||||
do {
|
||||
//printf("Enter m (between 2 and 20): ");
|
||||
//scanf("%d", &m);
|
||||
m = 6;
|
||||
} while ( !(m>1) || !(m<21) );
|
||||
for (i=1; i<m; i++)
|
||||
p[i] = 0;
|
||||
p[0] = p[m] = 1;
|
||||
if (m == 2) p[1] = 1;
|
||||
else if (m == 3) p[1] = 1;
|
||||
else if (m == 4) p[1] = 1;
|
||||
else if (m == 5) p[2] = 1;
|
||||
else if (m == 6) p[1] = 1;
|
||||
else if (m == 7) p[1] = 1;
|
||||
else if (m == 8) p[4] = p[5] = p[6] = 1;
|
||||
else if (m == 9) p[4] = 1;
|
||||
else if (m == 10) p[3] = 1;
|
||||
else if (m == 11) p[2] = 1;
|
||||
else if (m == 12) p[3] = p[4] = p[7] = 1;
|
||||
else if (m == 13) p[1] = p[3] = p[4] = 1;
|
||||
else if (m == 14) p[1] = p[11] = p[12] = 1;
|
||||
else if (m == 15) p[1] = 1;
|
||||
else if (m == 16) p[2] = p[3] = p[5] = 1;
|
||||
else if (m == 17) p[3] = 1;
|
||||
else if (m == 18) p[7] = 1;
|
||||
else if (m == 19) p[1] = p[5] = p[6] = 1;
|
||||
else if (m == 20) p[3] = 1;
|
||||
printf("p(x) = ");
|
||||
n = 1;
|
||||
for (i = 0; i <= m; i++) {
|
||||
n *= 2;
|
||||
printf("%1d", p[i]);
|
||||
}
|
||||
printf("\n");
|
||||
n = n / 2 - 1;
|
||||
ninf = (n + 1) / 2 - 1;
|
||||
/* do {
|
||||
printf("Enter code length (%d < length <= %d): ", ninf, n);
|
||||
scanf("%d", &length);
|
||||
} while ( !((length <= n)&&(length>ninf)) ); */
|
||||
length = 63;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
generate_gf()
|
||||
/*
|
||||
* Generate field GF(2**m) from the irreducible polynomial p(X) with
|
||||
* coefficients in p[0]..p[m].
|
||||
*
|
||||
* Lookup tables:
|
||||
* index->polynomial form: alpha_to[] contains j=alpha^i;
|
||||
* polynomial form -> index form: index_of[j=alpha^i] = i
|
||||
*
|
||||
* alpha=2 is the primitive element of GF(2**m)
|
||||
*/
|
||||
{
|
||||
register int i, mask;
|
||||
|
||||
mask = 1;
|
||||
alpha_to[m] = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
alpha_to[i] = mask;
|
||||
index_of[alpha_to[i]] = i;
|
||||
if (p[i] != 0)
|
||||
alpha_to[m] ^= mask;
|
||||
mask <<= 1;
|
||||
}
|
||||
index_of[alpha_to[m]] = m;
|
||||
mask >>= 1;
|
||||
for (i = m + 1; i < n; i++) {
|
||||
if (alpha_to[i - 1] >= mask)
|
||||
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
|
||||
else
|
||||
alpha_to[i] = alpha_to[i - 1] << 1;
|
||||
index_of[alpha_to[i]] = i;
|
||||
}
|
||||
index_of[0] = -1;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
gen_poly()
|
||||
/*
|
||||
* Compute the generator polynomial of a binary BCH code. Fist generate the
|
||||
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
|
||||
* determine those cycle sets that contain integers in the set of (d-1)
|
||||
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
|
||||
* as the product of linear factors of the form (x+alpha^i), for every i in
|
||||
* the above cycle sets.
|
||||
*/
|
||||
{
|
||||
register int ii, jj, ll, kaux;
|
||||
register int test, aux, nocycles, root, noterms, rdncy;
|
||||
int cycle[1024][21], size[1024], min[1024], zeros[1024];
|
||||
|
||||
/* Generate cycle sets modulo n, n = 2**m - 1 */
|
||||
cycle[0][0] = 0;
|
||||
size[0] = 1;
|
||||
cycle[1][0] = 1;
|
||||
size[1] = 1;
|
||||
jj = 1; /* cycle set index */
|
||||
if (m > 9) {
|
||||
printf("Computing cycle sets modulo %d\n", n);
|
||||
printf("(This may take some time)...\n");
|
||||
}
|
||||
do {
|
||||
/* Generate the jj-th cycle set */
|
||||
ii = 0;
|
||||
do {
|
||||
ii++;
|
||||
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;
|
||||
size[jj]++;
|
||||
aux = (cycle[jj][ii] * 2) % n;
|
||||
} while (aux != cycle[jj][0]);
|
||||
/* Next cycle set representative */
|
||||
ll = 0;
|
||||
do {
|
||||
ll++;
|
||||
test = 0;
|
||||
for (ii = 1; ((ii <= jj) && (!test)); ii++)
|
||||
/* Examine previous cycle sets */
|
||||
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
|
||||
if (ll == cycle[ii][kaux])
|
||||
test = 1;
|
||||
} while ((test) && (ll < (n - 1)));
|
||||
if (!(test)) {
|
||||
jj++; /* next cycle set index */
|
||||
cycle[jj][0] = ll;
|
||||
size[jj] = 1;
|
||||
}
|
||||
} while (ll < (n - 1));
|
||||
nocycles = jj; /* number of cycle sets modulo n */
|
||||
|
||||
//printf("Enter the error correcting capability, t: ");
|
||||
//scanf("%d", &t);
|
||||
t =3;
|
||||
|
||||
d = 2 * t + 1;
|
||||
|
||||
/* Search for roots 1, 2, ..., d-1 in cycle sets */
|
||||
kaux = 0;
|
||||
rdncy = 0;
|
||||
for (ii = 1; ii <= nocycles; ii++) {
|
||||
min[kaux] = 0;
|
||||
test = 0;
|
||||
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
|
||||
for (root = 1; ((root < d) && (!test)); root++)
|
||||
if (root == cycle[ii][jj]) {
|
||||
test = 1;
|
||||
min[kaux] = ii;
|
||||
}
|
||||
if (min[kaux]) {
|
||||
rdncy += size[min[kaux]];
|
||||
kaux++;
|
||||
}
|
||||
}
|
||||
noterms = kaux;
|
||||
kaux = 1;
|
||||
for (ii = 0; ii < noterms; ii++)
|
||||
for (jj = 0; jj < size[min[ii]]; jj++) {
|
||||
zeros[kaux] = cycle[min[ii]][jj];
|
||||
kaux++;
|
||||
}
|
||||
|
||||
k = length - rdncy;
|
||||
|
||||
if (k<0)
|
||||
{
|
||||
printf("Parameters invalid!\n");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d);
|
||||
|
||||
/* Compute the generator polynomial */
|
||||
g[0] = alpha_to[zeros[1]];
|
||||
g[1] = 1; /* g(x) = (X + zeros[1]) initially */
|
||||
for (ii = 2; ii <= rdncy; ii++) {
|
||||
g[ii] = 1;
|
||||
for (jj = ii - 1; jj > 0; jj--)
|
||||
if (g[jj] != 0)
|
||||
g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];
|
||||
else
|
||||
g[jj] = g[jj - 1];
|
||||
g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];
|
||||
}
|
||||
printf("Generator polynomial:\ng(x) = ");
|
||||
for (ii = 0; ii <= rdncy; ii++) {
|
||||
printf("%d", g[ii]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
encode_bch()
|
||||
/*
|
||||
* Compute redundacy bb[], the coefficients of b(x). The redundancy
|
||||
* polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
|
||||
* by the generator polynomial g(x).
|
||||
*/
|
||||
{
|
||||
register int i, j;
|
||||
register int feedback;
|
||||
|
||||
for (i = 0; i < length - k; i++)
|
||||
bb[i] = 0;
|
||||
for (i = k - 1; i >= 0; i--) {
|
||||
feedback = data[i] ^ bb[length - k - 1];
|
||||
if (feedback != 0) {
|
||||
for (j = length - k - 1; j > 0; j--)
|
||||
if (g[j] != 0)
|
||||
bb[j] = bb[j - 1] ^ feedback;
|
||||
else
|
||||
bb[j] = bb[j - 1];
|
||||
bb[0] = g[0] && feedback;
|
||||
} else {
|
||||
for (j = length - k - 1; j > 0; j--)
|
||||
bb[j] = bb[j - 1];
|
||||
bb[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* zero = success */
|
||||
int
|
||||
decode_bch()
|
||||
/*
|
||||
* Simon Rockliff's implementation of Berlekamp's algorithm.
|
||||
*
|
||||
* Assume we have received bits in recd[i], i=0..(n-1).
|
||||
*
|
||||
* Compute the 2*t syndromes by substituting alpha^i into rec(X) and
|
||||
* evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) .
|
||||
* Then we use the Berlekamp algorithm to find the error location polynomial
|
||||
* elp[i].
|
||||
*
|
||||
* If the degree of the elp is >t, then we cannot correct all the errors, and
|
||||
* we have detected an uncorrectable error pattern. We output the information
|
||||
* bits uncorrected.
|
||||
*
|
||||
* If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp
|
||||
* to get the roots, hence the inverse roots, the error location numbers.
|
||||
* This step is usually called "Chien's search".
|
||||
*
|
||||
* If the number of errors located is not equal the degree of the elp, then
|
||||
* the decoder assumes that there are more than t errors and cannot correct
|
||||
* them, only detect them. We output the information bits uncorrected.
|
||||
*/
|
||||
{
|
||||
register int i, j, u, q, t2, count = 0, syn_error = 0;
|
||||
int elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025];
|
||||
int root[200], loc[200], err[1024], reg[201];
|
||||
|
||||
t2 = 2 * t;
|
||||
|
||||
/* first form the syndromes */
|
||||
printf("S(x) = ");
|
||||
for (i = 1; i <= t2; i++) {
|
||||
s[i] = 0;
|
||||
for (j = 0; j < length; j++)
|
||||
if (recd[j] != 0)
|
||||
s[i] ^= alpha_to[(i * j) % n];
|
||||
if (s[i] != 0)
|
||||
syn_error = 1; /* set error flag if non-zero syndrome */
|
||||
/*
|
||||
* Note: If the code is used only for ERROR DETECTION, then
|
||||
* exit program here indicating the presence of errors.
|
||||
*/
|
||||
/* convert syndrome from polynomial form to index form */
|
||||
s[i] = index_of[s[i]];
|
||||
printf("%3d ", s[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
if (syn_error) { /* if there are errors, try to correct them */
|
||||
/*
|
||||
* Compute the error location polynomial via the Berlekamp
|
||||
* iterative algorithm. Following the terminology of Lin and
|
||||
* Costello's book : d[u] is the 'mu'th discrepancy, where
|
||||
* u='mu'+1 and 'mu' (the Greek letter!) is the step number
|
||||
* ranging from -1 to 2*t (see L&C), l[u] is the degree of
|
||||
* the elp at that step, and u_l[u] is the difference between
|
||||
* the step number and the degree of the elp.
|
||||
*/
|
||||
/* initialise table entries */
|
||||
d[0] = 0; /* index form */
|
||||
d[1] = s[1]; /* index form */
|
||||
elp[0][0] = 0; /* index form */
|
||||
elp[1][0] = 1; /* polynomial form */
|
||||
for (i = 1; i < t2; i++) {
|
||||
elp[0][i] = -1; /* index form */
|
||||
elp[1][i] = 0; /* polynomial form */
|
||||
}
|
||||
l[0] = 0;
|
||||
l[1] = 0;
|
||||
u_lu[0] = -1;
|
||||
u_lu[1] = 0;
|
||||
u = 0;
|
||||
|
||||
do {
|
||||
u++;
|
||||
if (d[u] == -1) {
|
||||
l[u + 1] = l[u];
|
||||
for (i = 0; i <= l[u]; i++) {
|
||||
elp[u + 1][i] = elp[u][i];
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
}
|
||||
} else
|
||||
/*
|
||||
* search for words with greatest u_lu[q] for
|
||||
* which d[q]!=0
|
||||
*/
|
||||
{
|
||||
q = u - 1;
|
||||
while ((d[q] == -1) && (q > 0))
|
||||
q--;
|
||||
/* have found first non-zero d[q] */
|
||||
if (q > 0) {
|
||||
j = q;
|
||||
do {
|
||||
j--;
|
||||
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
|
||||
q = j;
|
||||
} while (j > 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* have now found q such that d[u]!=0 and
|
||||
* u_lu[q] is maximum
|
||||
*/
|
||||
/* store degree of new elp polynomial */
|
||||
if (l[u] > l[q] + u - q)
|
||||
l[u + 1] = l[u];
|
||||
else
|
||||
l[u + 1] = l[q] + u - q;
|
||||
|
||||
/* form new elp(x) */
|
||||
for (i = 0; i < t2; i++)
|
||||
elp[u + 1][i] = 0;
|
||||
for (i = 0; i <= l[q]; i++)
|
||||
if (elp[q][i] != -1)
|
||||
elp[u + 1][i + u - q] =
|
||||
alpha_to[(d[u] + n - d[q] + elp[q][i]) % n];
|
||||
for (i = 0; i <= l[u]; i++) {
|
||||
elp[u + 1][i] ^= elp[u][i];
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
}
|
||||
}
|
||||
u_lu[u + 1] = u - l[u + 1];
|
||||
|
||||
/* form (u+1)th discrepancy */
|
||||
if (u < t2) {
|
||||
/* no discrepancy computed on last iteration */
|
||||
if (s[u + 1] != -1)
|
||||
d[u + 1] = alpha_to[s[u + 1]];
|
||||
else
|
||||
d[u + 1] = 0;
|
||||
for (i = 1; i <= l[u + 1]; i++)
|
||||
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
|
||||
d[u + 1] ^= alpha_to[(s[u + 1 - i]
|
||||
+ index_of[elp[u + 1][i]]) % n];
|
||||
/* put d[u+1] into index form */
|
||||
d[u + 1] = index_of[d[u + 1]];
|
||||
}
|
||||
} while ((u < t2) && (l[u + 1] <= t));
|
||||
|
||||
u++;
|
||||
if (l[u] <= t) {/* Can correct errors */
|
||||
/* put elp into index form */
|
||||
for (i = 0; i <= l[u]; i++)
|
||||
elp[u][i] = index_of[elp[u][i]];
|
||||
|
||||
printf("sigma(x) = ");
|
||||
for (i = 0; i <= l[u]; i++)
|
||||
printf("%3d ", elp[u][i]);
|
||||
printf("\n");
|
||||
printf("Roots: ");
|
||||
|
||||
/* Chien search: find roots of the error location polynomial */
|
||||
for (i = 1; i <= l[u]; i++)
|
||||
reg[i] = elp[u][i];
|
||||
count = 0;
|
||||
for (i = 1; i <= n; i++) {
|
||||
q = 1;
|
||||
for (j = 1; j <= l[u]; j++)
|
||||
if (reg[j] != -1) {
|
||||
reg[j] = (reg[j] + j) % n;
|
||||
q ^= alpha_to[reg[j]];
|
||||
}
|
||||
if (!q) { /* store root and error
|
||||
* location number indices */
|
||||
root[count] = i;
|
||||
loc[count] = n - i;
|
||||
count++;
|
||||
printf("%3d ", n - i);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
if (count == l[u])
|
||||
/* no. roots = degree of elp hence <= t errors */
|
||||
for (i = 0; i < l[u]; i++)
|
||||
recd[loc[i]] ^= 1;
|
||||
else { /* elp has degree >t hence cannot solve */
|
||||
printf("Incomplete decoding: errors detected\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void setup(int idx) {
|
||||
uint64_t pkt = packets[idx];
|
||||
printf("\n\nPACKET %llx\n", pkt);
|
||||
printf("-------------------------\n");
|
||||
pkt >>= 1; // Lose dummy bit */
|
||||
|
||||
/* Move BCH code over */
|
||||
for (int i = length - k - 1; i >= 0; i--) {
|
||||
recd[i] = pkt & 0x01;
|
||||
pkt >>= 1;
|
||||
}
|
||||
|
||||
/* Move data over */
|
||||
for (int i = length - 1; i >= length - k; i--) {
|
||||
recd[i] = pkt & 0x01;
|
||||
data[i - length + k] = recd[i];
|
||||
pkt >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int i;
|
||||
|
||||
read_p(); /* Read m */
|
||||
generate_gf(); /* Construct the Galois Field GF(2**m) */
|
||||
gen_poly(); /* Compute the generator polynomial of BCH code */
|
||||
|
||||
for (int count = 0; count < sizeof(packets) / sizeof(uint64_t); count++) {
|
||||
setup(count);
|
||||
memcpy(&orig_recd, recd, sizeof(recd));
|
||||
|
||||
int result = decode_bch(); /* DECODE received codeword recd[] */
|
||||
|
||||
printf("n=%d, k=%d, length=%d\n", n, k, length);
|
||||
printf("Results:\n");
|
||||
printf("\noriginal pkt: ");
|
||||
for (int i = 0; i < length; i++) {
|
||||
if (i == length - k) printf(" ");
|
||||
printf("%d", orig_recd[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
if (result) continue;
|
||||
/*
|
||||
* DECODING ERRORS? we compare only the data portion
|
||||
*/
|
||||
for (i = length - k; i < length; i++)
|
||||
if (data[i - length + k] != recd[i])
|
||||
decerror++;
|
||||
if (decerror) {
|
||||
printf("There were %d decoding errors in message positions\n", decerror);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* print out original and decoded data
|
||||
*/
|
||||
printf("recovered pkt: ");
|
||||
for (i = 0; i < length; i++) {
|
||||
if (i == length - k) printf(" ");
|
||||
printf("%1d", recd[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
|
||||
int flag = 0;
|
||||
printf("------------ ");
|
||||
for (int jj = 0; jj < length; jj++) {
|
||||
if (jj == length - k) printf(" ");
|
||||
if (orig_recd[jj] != recd[jj]) {
|
||||
printf("^");
|
||||
//printf("bit %d: expected %d calc: %d\n", jj, orig_recd[jj], recd[jj]);
|
||||
flag++;
|
||||
} else {
|
||||
printf(" ");
|
||||
}
|
||||
}
|
||||
printf("\n%d ERRORS.\n", flag);
|
||||
|
||||
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue