direwolf/src/dsp.c

407 lines
9.8 KiB
C

//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011, 2012, 2013, 2015, 2019 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*------------------------------------------------------------------
*
* Name: dsp.c
*
* Purpose: Generate the filters used by the demodulators.
*
*----------------------------------------------------------------*/
#include "direwolf.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "audio.h"
#include "fsk_demod_state.h"
#include "fsk_gen_filter.h"
#include "textcolor.h"
#include "dsp.h"
#define MIN(a,b) ((a)<(b)?(a):(b))
#define MAX(a,b) ((a)>(b)?(a):(b))
// Don't remove this. It serves as a reminder that an experiment is underway.
#if defined(TUNE_MS_FILTER_SIZE) || defined(TUNE_MS2_FILTER_SIZE) || defined(TUNE_AGC_FAST) || defined(TUNE_LPF_BAUD) || defined(TUNE_PLL_LOCKED) || defined(TUNE_PROFILE)
#define DEBUG1 1 // Don't remove this.
#endif
/*------------------------------------------------------------------
*
* Name: window
*
* Purpose: Filter window shape functions.
*
* Inputs: type - BP_WINDOW_HAMMING, etc.
* size - Number of filter taps.
* j - Index in range of 0 to size-1.
*
* Returns: Multiplier for the window shape.
*
*----------------------------------------------------------------*/
float window (bp_window_t type, int size, int j)
{
float center;
float w;
center = 0.5 * (size - 1);
switch (type) {
case BP_WINDOW_COSINE:
w = cos((j - center) / size * M_PI);
//w = sin(j * M_PI / (size - 1));
break;
case BP_WINDOW_HAMMING:
w = 0.53836 - 0.46164 * cos((j * 2 * M_PI) / (size - 1));
break;
case BP_WINDOW_BLACKMAN:
w = 0.42659 - 0.49656 * cos((j * 2 * M_PI) / (size - 1))
+ 0.076849 * cos((j * 4 * M_PI) / (size - 1));
break;
case BP_WINDOW_FLATTOP:
w = 1.0 - 1.93 * cos((j * 2 * M_PI) / (size - 1))
+ 1.29 * cos((j * 4 * M_PI) / (size - 1))
- 0.388 * cos((j * 6 * M_PI) / (size - 1))
+ 0.028 * cos((j * 8 * M_PI) / (size - 1));
break;
case BP_WINDOW_TRUNCATED:
default:
w = 1.0;
break;
}
return (w);
}
/*------------------------------------------------------------------
*
* Name: gen_lowpass
*
* Purpose: Generate low pass filter kernel.
*
* Inputs: fc - Cutoff frequency as fraction of sampling frequency.
* filter_size - Number of filter taps.
* wtype - Window type, BP_WINDOW_HAMMING, etc.
* lp_delay_fract - Fudge factor for the delay value.
*
* Outputs: lp_filter
*
* Returns: Signal delay thru the filter in number of audio samples.
*
*----------------------------------------------------------------*/
void gen_lowpass (float fc, float *lp_filter, int filter_size, bp_window_t wtype)
{
int j;
float G;
#if DEBUG1
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Lowpass, size=%d, fc=%.2f\n", filter_size, fc);
dw_printf (" j shape sinc final\n");
#endif
assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE);
for (j=0; j<filter_size; j++) {
float center;
float sinc;
float shape;
center = 0.5 * (filter_size - 1);
if (j - center == 0) {
sinc = 2 * fc;
}
else {
sinc = sin(2 * M_PI * fc * (j-center)) / (M_PI*(j-center));
}
shape = window (wtype, filter_size, j);
lp_filter[j] = sinc * shape;
#if DEBUG1
dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, lp_filter[j] ) ;
#endif
}
/*
* Normalize lowpass for unity gain at DC.
*/
G = 0;
for (j=0; j<filter_size; j++) {
G += lp_filter[j];
}
for (j=0; j<filter_size; j++) {
lp_filter[j] = lp_filter[j] / G;
}
return;
} /* end gen_lowpass */
#undef DEBUG1
/*------------------------------------------------------------------
*
* Name: gen_bandpass
*
* Purpose: Generate band pass filter kernel for the prefilter.
* This is NOT for the mark/space filters.
*
* Inputs: f1 - Lower cutoff frequency as fraction of sampling frequency.
* f2 - Upper cutoff frequency...
* filter_size - Number of filter taps.
* wtype - Window type, BP_WINDOW_HAMMING, etc.
*
* Outputs: bp_filter
*
* Reference: http://www.labbookpages.co.uk/audio/firWindowing.html
*
* Does it need to be an odd length?
*
*----------------------------------------------------------------*/
void gen_bandpass (float f1, float f2, float *bp_filter, int filter_size, bp_window_t wtype)
{
int j;
float w;
float G;
float center = 0.5 * (filter_size - 1);
#if DEBUG1
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Bandpass, size=%d\n", filter_size);
dw_printf (" j shape sinc final\n");
#endif
assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE);
for (j=0; j<filter_size; j++) {
float sinc;
float shape;
if (j - center == 0) {
sinc = 2 * (f2 - f1);
}
else {
sinc = sin(2 * M_PI * f2 * (j-center)) / (M_PI*(j-center))
- sin(2 * M_PI * f1 * (j-center)) / (M_PI*(j-center));
}
shape = window (wtype, filter_size, j);
bp_filter[j] = sinc * shape;
#if DEBUG1
dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, bp_filter[j] ) ;
#endif
}
/*
* Normalize bandpass for unity gain in middle of passband.
* Can't use same technique as for lowpass.
* Instead compute gain in middle of passband.
* See http://dsp.stackexchange.com/questions/4693/fir-filter-gain
*/
w = 2 * M_PI * (f1 + f2) / 2;
G = 0;
for (j=0; j<filter_size; j++) {
G += 2 * bp_filter[j] * cos((j-center)*w); // is this correct?
}
#if DEBUG1
dw_printf ("Before normalizing, G=%.3f\n", G);
#endif
for (j=0; j<filter_size; j++) {
bp_filter[j] = bp_filter[j] / G;
}
} /* end gen_bandpass */
/*------------------------------------------------------------------
*
* Name: gen_ms
*
* Purpose: Generate mark and space filters.
*
* Inputs: fc - Tone frequency, i.e. mark or space.
* sps - Samples per second.
* filter_size - Number of filter taps.
* wtype - Window type, BP_WINDOW_HAMMING, etc.
*
* Outputs: bp_filter
*
* Reference: http://www.labbookpages.co.uk/audio/firWindowing.html
*
* Does it need to be an odd length?
*
*----------------------------------------------------------------*/
void gen_ms (int fc, int sps, float *sin_table, float *cos_table, int filter_size, int wtype)
{
int j;
float Gs = 0, Gc = 0;;
for (j=0; j<filter_size; j++) {
float center = 0.5f * (filter_size - 1);
float am = ((float)(j - center) / (float)sps) * ((float)fc) * (2.0f * (float)M_PI);
float shape = window (wtype, filter_size, j);
sin_table[j] = sinf(am) * shape;
cos_table[j] = cosf(am) * shape;
Gs += sin_table[j] * sinf(am);
Gc += cos_table[j] * cosf(am);
#if DEBUG1
dw_printf ("%6d %6.2f %6.2f %6.2f\n", j, shape, sin_table[j], cos_table[j]) ;
#endif
}
/* Normalize for unity gain */
#if DEBUG1
dw_printf ("Before normalizing, Gs = %.2f, Gc = %.2f\n", Gs, Gc) ;
#endif
for (j=0; j<filter_size; j++) {
sin_table[j] = sin_table[j] / Gs;
cos_table[j] = cos_table[j] / Gc;
}
} /* end gen_ms */
/*------------------------------------------------------------------
*
* Name: rrc
*
* Purpose: Root Raised Cosine function.
* Why do they call it that?
* It's mostly the sinc function with cos windowing to taper off edges faster.
*
* Inputs: t - Time in units of symbol duration.
* i.e. The centers of two adjacent symbols would differ by 1.
*
* a - Roll off factor, between 0 and 1.
*
* Returns: Basically the sinc (sin(x)/x) function with edges decreasing faster.
* Should be 1 for t = 0 and 0 at all other integer values of t.
*
*----------------------------------------------------------------*/
__attribute__((const))
float rrc (float t, float a)
{
float sinc, window, result;
if (t > -0.001 && t < 0.001) {
sinc = 1;
}
else {
sinc = sinf(M_PI * t) / (M_PI * t);
}
if (fabsf(a * t) > 0.499 && fabsf(a * t) < 0.501) {
window = M_PI / 4;
}
else {
window = cos(M_PI * a * t) / ( 1 - powf(2 * a * t, 2));
// This made nicer looking waveforms for generating signal.
//window = cos(M_PI * a * t);
// Do we want to let it go negative?
// I think this would happen when a > 0.5 / (filter width in symbol times)
if (window < 0) {
//printf ("'a' is too large for range of 't'.\n");
//window = 0;
}
}
result = sinc * window;
#if DEBUGRRC
// t should vary from - to + half of filter size in symbols.
// Result should be 1 at t=0 and 0 at all other integer values of t.
printf ("%.3f, %.3f, %.3f, %.3f\n", t, sinc, window, result);
#endif
return (result);
}
// The Root Raised Cosine (RRC) low pass filter is suppposed to minimize Intersymbol Interference (ISI).
void gen_rrc_lowpass (float *pfilter, int filter_taps, float rolloff, float samples_per_symbol)
{
int k;
float t;
for (k = 0; k < filter_taps; k++) {
t = (k - ((filter_taps - 1.0) / 2.0)) / samples_per_symbol;
pfilter[k] = rrc (t, rolloff);
}
// Scale it for unity gain.
t = 0;
for (k = 0; k < filter_taps; k++) {
t += pfilter[k];
}
for (k = 0; k < filter_taps; k++) {
pfilter[k] = pfilter[k] / t;
}
}
/* end dsp.c */