mirror of https://github.com/wb2osz/direwolf.git
407 lines
9.8 KiB
C
407 lines
9.8 KiB
C
//
|
|
// This file is part of Dire Wolf, an amateur radio packet TNC.
|
|
//
|
|
// Copyright (C) 2011, 2012, 2013, 2015, 2019 John Langner, WB2OSZ
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: dsp.c
|
|
*
|
|
* Purpose: Generate the filters used by the demodulators.
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
#include "direwolf.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "audio.h"
|
|
#include "fsk_demod_state.h"
|
|
#include "fsk_gen_filter.h"
|
|
#include "textcolor.h"
|
|
#include "dsp.h"
|
|
|
|
|
|
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
#define MAX(a,b) ((a)>(b)?(a):(b))
|
|
|
|
|
|
// Don't remove this. It serves as a reminder that an experiment is underway.
|
|
|
|
#if defined(TUNE_MS_FILTER_SIZE) || defined(TUNE_MS2_FILTER_SIZE) || defined(TUNE_AGC_FAST) || defined(TUNE_LPF_BAUD) || defined(TUNE_PLL_LOCKED) || defined(TUNE_PROFILE)
|
|
#define DEBUG1 1 // Don't remove this.
|
|
#endif
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: window
|
|
*
|
|
* Purpose: Filter window shape functions.
|
|
*
|
|
* Inputs: type - BP_WINDOW_HAMMING, etc.
|
|
* size - Number of filter taps.
|
|
* j - Index in range of 0 to size-1.
|
|
*
|
|
* Returns: Multiplier for the window shape.
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
float window (bp_window_t type, int size, int j)
|
|
{
|
|
float center;
|
|
float w;
|
|
|
|
center = 0.5 * (size - 1);
|
|
|
|
switch (type) {
|
|
|
|
case BP_WINDOW_COSINE:
|
|
w = cos((j - center) / size * M_PI);
|
|
//w = sin(j * M_PI / (size - 1));
|
|
break;
|
|
|
|
case BP_WINDOW_HAMMING:
|
|
w = 0.53836 - 0.46164 * cos((j * 2 * M_PI) / (size - 1));
|
|
break;
|
|
|
|
case BP_WINDOW_BLACKMAN:
|
|
w = 0.42659 - 0.49656 * cos((j * 2 * M_PI) / (size - 1))
|
|
+ 0.076849 * cos((j * 4 * M_PI) / (size - 1));
|
|
break;
|
|
|
|
case BP_WINDOW_FLATTOP:
|
|
w = 1.0 - 1.93 * cos((j * 2 * M_PI) / (size - 1))
|
|
+ 1.29 * cos((j * 4 * M_PI) / (size - 1))
|
|
- 0.388 * cos((j * 6 * M_PI) / (size - 1))
|
|
+ 0.028 * cos((j * 8 * M_PI) / (size - 1));
|
|
break;
|
|
|
|
case BP_WINDOW_TRUNCATED:
|
|
default:
|
|
w = 1.0;
|
|
break;
|
|
}
|
|
return (w);
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: gen_lowpass
|
|
*
|
|
* Purpose: Generate low pass filter kernel.
|
|
*
|
|
* Inputs: fc - Cutoff frequency as fraction of sampling frequency.
|
|
* filter_size - Number of filter taps.
|
|
* wtype - Window type, BP_WINDOW_HAMMING, etc.
|
|
* lp_delay_fract - Fudge factor for the delay value.
|
|
*
|
|
* Outputs: lp_filter
|
|
*
|
|
* Returns: Signal delay thru the filter in number of audio samples.
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
|
|
void gen_lowpass (float fc, float *lp_filter, int filter_size, bp_window_t wtype)
|
|
{
|
|
int j;
|
|
float G;
|
|
|
|
|
|
#if DEBUG1
|
|
text_color_set(DW_COLOR_DEBUG);
|
|
|
|
dw_printf ("Lowpass, size=%d, fc=%.2f\n", filter_size, fc);
|
|
dw_printf (" j shape sinc final\n");
|
|
#endif
|
|
|
|
assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE);
|
|
|
|
for (j=0; j<filter_size; j++) {
|
|
float center;
|
|
float sinc;
|
|
float shape;
|
|
|
|
center = 0.5 * (filter_size - 1);
|
|
|
|
if (j - center == 0) {
|
|
sinc = 2 * fc;
|
|
}
|
|
else {
|
|
sinc = sin(2 * M_PI * fc * (j-center)) / (M_PI*(j-center));
|
|
}
|
|
|
|
shape = window (wtype, filter_size, j);
|
|
lp_filter[j] = sinc * shape;
|
|
|
|
#if DEBUG1
|
|
dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, lp_filter[j] ) ;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Normalize lowpass for unity gain at DC.
|
|
*/
|
|
G = 0;
|
|
for (j=0; j<filter_size; j++) {
|
|
G += lp_filter[j];
|
|
}
|
|
for (j=0; j<filter_size; j++) {
|
|
lp_filter[j] = lp_filter[j] / G;
|
|
}
|
|
|
|
return;
|
|
|
|
} /* end gen_lowpass */
|
|
|
|
|
|
#undef DEBUG1
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: gen_bandpass
|
|
*
|
|
* Purpose: Generate band pass filter kernel for the prefilter.
|
|
* This is NOT for the mark/space filters.
|
|
*
|
|
* Inputs: f1 - Lower cutoff frequency as fraction of sampling frequency.
|
|
* f2 - Upper cutoff frequency...
|
|
* filter_size - Number of filter taps.
|
|
* wtype - Window type, BP_WINDOW_HAMMING, etc.
|
|
*
|
|
* Outputs: bp_filter
|
|
*
|
|
* Reference: http://www.labbookpages.co.uk/audio/firWindowing.html
|
|
*
|
|
* Does it need to be an odd length?
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
|
|
void gen_bandpass (float f1, float f2, float *bp_filter, int filter_size, bp_window_t wtype)
|
|
{
|
|
int j;
|
|
float w;
|
|
float G;
|
|
float center = 0.5 * (filter_size - 1);
|
|
|
|
#if DEBUG1
|
|
text_color_set(DW_COLOR_DEBUG);
|
|
|
|
dw_printf ("Bandpass, size=%d\n", filter_size);
|
|
dw_printf (" j shape sinc final\n");
|
|
#endif
|
|
|
|
assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE);
|
|
|
|
for (j=0; j<filter_size; j++) {
|
|
float sinc;
|
|
float shape;
|
|
|
|
if (j - center == 0) {
|
|
sinc = 2 * (f2 - f1);
|
|
}
|
|
else {
|
|
sinc = sin(2 * M_PI * f2 * (j-center)) / (M_PI*(j-center))
|
|
- sin(2 * M_PI * f1 * (j-center)) / (M_PI*(j-center));
|
|
}
|
|
|
|
shape = window (wtype, filter_size, j);
|
|
bp_filter[j] = sinc * shape;
|
|
|
|
#if DEBUG1
|
|
dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, bp_filter[j] ) ;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Normalize bandpass for unity gain in middle of passband.
|
|
* Can't use same technique as for lowpass.
|
|
* Instead compute gain in middle of passband.
|
|
* See http://dsp.stackexchange.com/questions/4693/fir-filter-gain
|
|
*/
|
|
w = 2 * M_PI * (f1 + f2) / 2;
|
|
G = 0;
|
|
for (j=0; j<filter_size; j++) {
|
|
G += 2 * bp_filter[j] * cos((j-center)*w); // is this correct?
|
|
}
|
|
|
|
#if DEBUG1
|
|
dw_printf ("Before normalizing, G=%.3f\n", G);
|
|
#endif
|
|
for (j=0; j<filter_size; j++) {
|
|
bp_filter[j] = bp_filter[j] / G;
|
|
}
|
|
|
|
} /* end gen_bandpass */
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: gen_ms
|
|
*
|
|
* Purpose: Generate mark and space filters.
|
|
*
|
|
* Inputs: fc - Tone frequency, i.e. mark or space.
|
|
* sps - Samples per second.
|
|
* filter_size - Number of filter taps.
|
|
* wtype - Window type, BP_WINDOW_HAMMING, etc.
|
|
*
|
|
* Outputs: bp_filter
|
|
*
|
|
* Reference: http://www.labbookpages.co.uk/audio/firWindowing.html
|
|
*
|
|
* Does it need to be an odd length?
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
|
|
void gen_ms (int fc, int sps, float *sin_table, float *cos_table, int filter_size, int wtype)
|
|
{
|
|
int j;
|
|
float Gs = 0, Gc = 0;;
|
|
|
|
for (j=0; j<filter_size; j++) {
|
|
|
|
float center = 0.5f * (filter_size - 1);
|
|
float am = ((float)(j - center) / (float)sps) * ((float)fc) * (2.0f * (float)M_PI);
|
|
|
|
float shape = window (wtype, filter_size, j);
|
|
|
|
sin_table[j] = sinf(am) * shape;
|
|
cos_table[j] = cosf(am) * shape;
|
|
|
|
Gs += sin_table[j] * sinf(am);
|
|
Gc += cos_table[j] * cosf(am);
|
|
|
|
#if DEBUG1
|
|
dw_printf ("%6d %6.2f %6.2f %6.2f\n", j, shape, sin_table[j], cos_table[j]) ;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Normalize for unity gain */
|
|
|
|
#if DEBUG1
|
|
dw_printf ("Before normalizing, Gs = %.2f, Gc = %.2f\n", Gs, Gc) ;
|
|
#endif
|
|
for (j=0; j<filter_size; j++) {
|
|
sin_table[j] = sin_table[j] / Gs;
|
|
cos_table[j] = cos_table[j] / Gc;
|
|
}
|
|
|
|
} /* end gen_ms */
|
|
|
|
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
*
|
|
* Name: rrc
|
|
*
|
|
* Purpose: Root Raised Cosine function.
|
|
* Why do they call it that?
|
|
* It's mostly the sinc function with cos windowing to taper off edges faster.
|
|
*
|
|
* Inputs: t - Time in units of symbol duration.
|
|
* i.e. The centers of two adjacent symbols would differ by 1.
|
|
*
|
|
* a - Roll off factor, between 0 and 1.
|
|
*
|
|
* Returns: Basically the sinc (sin(x)/x) function with edges decreasing faster.
|
|
* Should be 1 for t = 0 and 0 at all other integer values of t.
|
|
*
|
|
*----------------------------------------------------------------*/
|
|
|
|
__attribute__((const))
|
|
float rrc (float t, float a)
|
|
{
|
|
float sinc, window, result;
|
|
|
|
if (t > -0.001 && t < 0.001) {
|
|
sinc = 1;
|
|
}
|
|
else {
|
|
sinc = sinf(M_PI * t) / (M_PI * t);
|
|
}
|
|
|
|
if (fabsf(a * t) > 0.499 && fabsf(a * t) < 0.501) {
|
|
window = M_PI / 4;
|
|
}
|
|
else {
|
|
window = cos(M_PI * a * t) / ( 1 - powf(2 * a * t, 2));
|
|
// This made nicer looking waveforms for generating signal.
|
|
//window = cos(M_PI * a * t);
|
|
// Do we want to let it go negative?
|
|
// I think this would happen when a > 0.5 / (filter width in symbol times)
|
|
if (window < 0) {
|
|
//printf ("'a' is too large for range of 't'.\n");
|
|
//window = 0;
|
|
}
|
|
}
|
|
|
|
result = sinc * window;
|
|
|
|
#if DEBUGRRC
|
|
// t should vary from - to + half of filter size in symbols.
|
|
// Result should be 1 at t=0 and 0 at all other integer values of t.
|
|
|
|
printf ("%.3f, %.3f, %.3f, %.3f\n", t, sinc, window, result);
|
|
#endif
|
|
return (result);
|
|
}
|
|
|
|
// The Root Raised Cosine (RRC) low pass filter is suppposed to minimize Intersymbol Interference (ISI).
|
|
|
|
void gen_rrc_lowpass (float *pfilter, int filter_taps, float rolloff, float samples_per_symbol)
|
|
{
|
|
int k;
|
|
float t;
|
|
|
|
for (k = 0; k < filter_taps; k++) {
|
|
t = (k - ((filter_taps - 1.0) / 2.0)) / samples_per_symbol;
|
|
pfilter[k] = rrc (t, rolloff);
|
|
}
|
|
|
|
// Scale it for unity gain.
|
|
|
|
t = 0;
|
|
for (k = 0; k < filter_taps; k++) {
|
|
t += pfilter[k];
|
|
}
|
|
for (k = 0; k < filter_taps; k++) {
|
|
pfilter[k] = pfilter[k] / t;
|
|
}
|
|
}
|
|
|
|
/* end dsp.c */
|