direwolf/dtmf.c

595 lines
16 KiB
C

//#define DEBUG 1
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2013, 2014, 2015, 2016 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*------------------------------------------------------------------
*
* Module: dtmf.c
*
* Purpose: Decoder for DTMF, commonly known as "touch tones."
*
* Description: This uses the Goertzel Algorithm for tone detection.
*
* References: http://eetimes.com/design/embedded/4024443/The-Goertzel-Algorithm
* http://www.ti.com/ww/cn/uprogram/share/ppt/c5000/17dtmf_v13.ppt
*
* Revisions: 1.4 - Added transmit capability.
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <string.h>
#include "dtmf.h"
#include "hdlc_rec.h" // for dcd_change
#include "textcolor.h"
#include "gen_tone.h"
#if DTMF_TEST
#define TIMEOUT_SEC 1 /* short for unit test below. */
#define DEBUG 1 // Don't remove this. We want more output for test.
#else
#define TIMEOUT_SEC 5 /* for normal operation. */
#endif
#define NUM_TONES 8
static int const dtmf_tones[NUM_TONES] = { 697, 770, 852, 941, 1209, 1336, 1477, 1633 };
/*
* Current state of the DTMF decoding.
*/
static struct dd_s { /* Separate for each audio channel. */
int sample_rate; /* Samples per sec. Typ. 44100, 8000, etc. */
int block_size; /* Number of samples to process in one block. */
float coef[NUM_TONES];
int n; /* Samples processed in this block. */
float Q1[NUM_TONES];
float Q2[NUM_TONES];
char prev_dec;
char debounced;
char prev_debounced;
int timeout;
} dd[MAX_CHANS];
static int s_amplitude = 100; // range of 0 .. 100
static void push_button (int chan, char button, int ms);
/*------------------------------------------------------------------
*
* Name: dtmf_init
*
* Purpose: Initialize the DTMF decoder.
* This should be called once at application start up time.
*
* Inputs: p_audio_config - Configuration for audio interfaces.
*
* All we care about is:
*
* samples_per_sec - Audio sample frequency, typically
* 44100, 22050, 8000, etc.
*
* This is a associated with the soundcard.
* In version 1.2, we can have multiple soundcards
* with potentially different sample rates.
*
* amp - Signal amplitude, for transmit, on scale of 0 .. 100.
*
* 100 will produce maximum amplitude of +-32k samples.
*
* Returns: None.
*
*----------------------------------------------------------------*/
void dtmf_init (struct audio_s *p_audio_config, int amp)
{
int j; /* Loop over all tones frequencies. */
int c; /* Loop over all audio channels. */
s_amplitude = amp;
/*
* Pick a suitable processing block size.
* Larger = narrower bandwidth, slower response.
*/
for (c=0; c<MAX_CHANS; c++) {
struct dd_s *D = &(dd[c]);
int a = ACHAN2ADEV(c);
D->sample_rate = p_audio_config->adev[a].samples_per_sec;
if (p_audio_config->achan[c].dtmf_decode != DTMF_DECODE_OFF) {
#if DEBUG
text_color_set(DW_COLOR_DEBUG);
dw_printf ("channel %d:\n", c);
#endif
D->block_size = (205 * D->sample_rate) / 8000;
#if DEBUG
dw_printf (" freq k coef \n");
#endif
for (j=0; j<NUM_TONES; j++) {
float k;
// Why do some insist on rounding k to the nearest integer?
// That would move the filter center frequency away from ideal.
// What is to be gained?
// More consistent results for all the tones when k is not rounded off.
k = D->block_size * (float)(dtmf_tones[j]) / (float)(D->sample_rate);
D->coef[j] = 2.0f * cosf(2.0f * (float)M_PI * (float)k / (float)(D->block_size));
assert (D->coef[j] > 0.0f && D->coef[j] < 2.0f);
#if DEBUG
dw_printf ("%8d %5.1f %8.5f \n", dtmf_tones[j], k, D->coef[j]);
#endif
}
}
}
for (c=0; c<MAX_CHANS; c++) {
struct dd_s *D = &(dd[c]);
D->n = 0;
for (j=0; j<NUM_TONES; j++) {
D->Q1[j] = 0;
D->Q2[j] = 0;
}
D->prev_dec = ' ';
D->debounced = ' ';
D->prev_debounced = ' ';
D->timeout = 0;
}
}
/*------------------------------------------------------------------
*
* Name: dtmf_sample
*
* Purpose: Process one audio sample from the sound input source.
*
* Inputs: c - Audio channel number.
* This can process multiple channels in parallel.
* input - Audio sample.
*
* Returns: 0123456789ABCD*# for a button push.
* . for nothing happening during sample interval.
* $ after several seconds of inactivity.
* space between sample intervals.
*
*
*----------------------------------------------------------------*/
__attribute__((hot))
char dtmf_sample (int c, float input)
{
int i;
float Q0;
float output[NUM_TONES];
char decoded;
char ret;
struct dd_s *D;
static const char rc2char[16] = { '1', '2', '3', 'A',
'4', '5', '6', 'B',
'7', '8', '9', 'C',
'*', '0', '#', 'D' };
D = &(dd[c]);
for (i=0; i<NUM_TONES; i++) {
Q0 = input + D->Q1[i] * D->coef[i] - D->Q2[i];
D->Q2[i] = D->Q1[i];
D->Q1[i] = Q0;
}
/*
* Is it time to process the block?
*/
D->n++;
if (D->n == D->block_size) {
int row, col;
for (i=0; i<NUM_TONES; i++) {
output[i] = sqrt(D->Q1[i] * D->Q1[i] + D->Q2[i] * D->Q2[i] - D->Q1[i] * D->Q2[i] * D->coef[i]);
D->Q1[i] = 0;
D->Q2[i] = 0;
}
D->n = 0;
/*
* The input signal can vary over a couple orders of
* magnitude so we can't set some absolute threshold.
*
* See if one tone is stronger than the sum of the
* others in the same group multiplied by some factor.
*
* For perfect synthetic signals this needs to be in
* the range of about 1.33 (very senstive) to 2.15 (very fussy).
*
* Too low will cause false triggers on random noise.
* Too high will won't decode less than perfect signals.
*
* Use the mid point 1.74 as our initial guess.
* It might need some fine tuning for imperfect real world signals.
*/
#define THRESHOLD 1.74f
if (output[0] > THRESHOLD * ( output[1] + output[2] + output[3])) row = 0;
else if (output[1] > THRESHOLD * (output[0] + output[2] + output[3])) row = 1;
else if (output[2] > THRESHOLD * (output[0] + output[1] + output[3])) row = 2;
else if (output[3] > THRESHOLD * (output[0] + output[1] + output[2] )) row = 3;
else row = -1;
if (output[4] > THRESHOLD * ( output[5] + output[6] + output[7])) col = 0;
else if (output[5] > THRESHOLD * (output[4] + output[6] + output[7])) col = 1;
else if (output[6] > THRESHOLD * (output[4] + output[5] + output[7])) col = 2;
else if (output[7] > THRESHOLD * (output[4] + output[5] + output[6] )) col = 3;
else col = -1;
for (i=0; i<NUM_TONES; i++) {
#if DEBUG
dw_printf ("%5.0f ", output[i]);
#endif
}
if (row >= 0 && col >= 0) {
decoded = rc2char[row*4+col];
}
else {
decoded = ' ';
}
// Consider valid only if we get same twice in a row.
if (decoded == D->prev_dec) {
D->debounced = decoded;
// Update Data Carrier Detect Indicator.
#ifndef DTMF_TEST
dcd_change (c, MAX_SUBCHANS, 0, decoded != ' ');
#endif
/* Reset timeout timer. */
if (decoded != ' ') {
D->timeout = ((TIMEOUT_SEC) * D->sample_rate) / D->block_size;
}
}
D->prev_dec = decoded;
// Return only new button pushes.
// Also report timeout after period of inactivity.
ret = '.';
if (D->debounced != D->prev_debounced) {
if (D->debounced != ' ') {
ret = D->debounced;
}
}
if (ret == '.') {
if (D->timeout > 0) {
D->timeout--;
if (D->timeout == 0) {
ret = '$';
}
}
}
D->prev_debounced = D->debounced;
#if DEBUG
dw_printf (" dec=%c, deb=%c, ret=%c, to=%d \n",
decoded, D->debounced, ret, D->timeout);
#endif
return (ret);
}
return (' ');
}
/*-------------------------------------------------------------------
*
* Name: dtmf_send
*
* Purpose: Generate DTMF tones from text string.
*
* Inputs: chan - Radio channel number.
* str - Character string to send. 0-9, A-D, *, #
* speed - Number of tones per second. Range 1 to 10.
* txdelay - Delay (ms) from PTT to start.
* txtail - Delay (ms) from end to PTT off.
*
* Returns: Total number of milliseconds to activate PTT.
* This includes delays before the first tone
* and after the last to avoid chopping off part of it.
*
* Description: xmit_thread calls this instead of the usual hdlc_send
* when we have a special packet that means send DTMF.
*
*--------------------------------------------------------------------*/
int dtmf_send (int chan, char *str, int speed, int txdelay, int txtail)
{
char *p;
int len_ms; // Length of tone or gap between.
len_ms = (int) ( ( 500.0f / (float)speed ) + 0.5f);
push_button (chan, ' ', txdelay);
for (p = str; *p != '\0'; p++) {
push_button (chan, *p, len_ms);
push_button (chan, ' ', len_ms);
}
push_button (chan, ' ', txtail);
#ifndef DTMF_TEST
audio_flush(ACHAN2ADEV(chan));
#endif
return (txdelay +
(int) (1000.0f * (float)strlen(str) / (float)speed + 0.5f) +
txtail);
} /* end dtmf_send */
/*------------------------------------------------------------------
*
* Name: push_button
*
* Purpose: Generate DTMF tone for a button push.
*
* Inputs: chan - Radio channel number.
*
* button - One of 0-9, A-D, *, #. Others result in silence.
* '?' is a special case used only for unit testing.
*
* ms - Duration in milliseconds.
* Use 50 ms for tone and 50 ms of silence for max rate of 10 per second.
*
* Outputs: Audio is sent to radio.
*
*----------------------------------------------------------------*/
static void push_button (int chan, char button, int ms)
{
float phasea = 0;
float phaseb = 0;
float fa = 0;
float fb = 0;
int i;
float dtmf; // Audio. Sum of two sine waves.
#if DTMF_TEST
char x;
static char result[100];
static int result_len = 0;
#endif
switch (button) {
case '1': fa = dtmf_tones[0]; fb = dtmf_tones[4]; break;
case '2': fa = dtmf_tones[0]; fb = dtmf_tones[5]; break;
case '3': fa = dtmf_tones[0]; fb = dtmf_tones[6]; break;
case 'a':
case 'A': fa = dtmf_tones[0]; fb = dtmf_tones[7]; break;
case '4': fa = dtmf_tones[1]; fb = dtmf_tones[4]; break;
case '5': fa = dtmf_tones[1]; fb = dtmf_tones[5]; break;
case '6': fa = dtmf_tones[1]; fb = dtmf_tones[6]; break;
case 'b':
case 'B': fa = dtmf_tones[1]; fb = dtmf_tones[7]; break;
case '7': fa = dtmf_tones[2]; fb = dtmf_tones[4]; break;
case '8': fa = dtmf_tones[2]; fb = dtmf_tones[5]; break;
case '9': fa = dtmf_tones[2]; fb = dtmf_tones[6]; break;
case 'c':
case 'C': fa = dtmf_tones[2]; fb = dtmf_tones[7]; break;
case '*': fa = dtmf_tones[3]; fb = dtmf_tones[4]; break;
case '0': fa = dtmf_tones[3]; fb = dtmf_tones[5]; break;
case '#': fa = dtmf_tones[3]; fb = dtmf_tones[6]; break;
case 'd':
case 'D': fa = dtmf_tones[3]; fb = dtmf_tones[7]; break;
#if DTMF_TEST
case '?': /* check result */
if (strcmp(result, "123A456B789C*0#D123$789$") == 0) {
text_color_set(DW_COLOR_REC);
dw_printf ("\nSuccess!\n");
}
else if (strcmp(result, "123A456B789C*0#D123789") == 0) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("\n * Time-out failed, otherwise OK *\n");
dw_printf ("\"%s\"\n", result);
exit (EXIT_FAILURE);
}
else {
text_color_set(DW_COLOR_ERROR);
dw_printf ("\n *** TEST FAILED ***\n");
dw_printf ("\"%s\"\n", result);
exit (EXIT_FAILURE);
}
break;
#endif
}
//dw_printf ("push_button (%d, '%c', %d), fa=%.0f, fb=%.0f. %d samples\n", chan, button, ms, fa, fb, (ms*dd[chan].sample_rate)/1000);
for (i = 0; i < (ms*dd[chan].sample_rate)/1000; i++) {
// This could be more efficient with a precomputed sine wave table
// but I'm not that worried about it.
// With a Raspberry Pi, model 2, default 1200 receiving takes about 14% of one CPU core.
// When transmitting tones, it briefly shoots up to about 33%.
if (fa > 0 && fb > 0) {
dtmf = sinf(phasea) + sinf(phaseb);
phasea += 2.0f * (float)M_PI * fa / dd[chan].sample_rate;
phaseb += 2.0f * (float)M_PI * fb / dd[chan].sample_rate;
}
else {
dtmf = 0;
}
#if DTMF_TEST
/* Make sure it is insensitive to signal amplitude. */
/* (Uncomment each of below when testing.) */
x = dtmf_sample (0, dtmf);
//x = dtmf_sample (0, dtmf * 1000);
//x = dtmf_sample (0, dtmf * 0.001);
if (x != ' ' && x != '.') {
result[result_len] = x;
result_len++;
result[result_len] = '\0';
}
#else
// 'dtmf' can be in range of +-2.0 because it is sum of two sine waves.
// Amplitude of 100 would use full +-32k range.
int sam = (int)(dtmf * 16383.0f * (float)s_amplitude / 100.0f);
gen_tone_put_sample (chan, ACHAN2ADEV(chan), sam);
#endif
}
}
/*------------------------------------------------------------------
*
* Name: main
*
* Purpose: Unit test for functions above.
*
* Usage: rm a.exe ; gcc -DDTMF_TEST dtmf.c textcolor.c ; ./a.exe
* or
* make dtmftest
*
*----------------------------------------------------------------*/
#if DTMF_TEST
static struct audio_s my_audio_config;
int main ()
{
int c = 0; // radio channel.
memset (&my_audio_config, 0, sizeof(my_audio_config));
my_audio_config.adev[ACHAN2ADEV(c)].defined = 1;
my_audio_config.adev[ACHAN2ADEV(c)].samples_per_sec = 44100;
my_audio_config.achan[c].valid = 1;
my_audio_config.achan[c].dtmf_decode = DTMF_DECODE_ON;
dtmf_init(&my_audio_config, 50);
text_color_set(DW_COLOR_INFO);
dw_printf ("\nFirst, check all button tone pairs. \n\n");
/* Max auto dialing rate is 10 per second. */
push_button (c, '1', 50); push_button (c, ' ', 50);
push_button (c, '2', 50); push_button (c, ' ', 50);
push_button (c, '3', 50); push_button (c, ' ', 50);
push_button (c, 'A', 50); push_button (c, ' ', 50);
push_button (c, '4', 50); push_button (c, ' ', 50);
push_button (c, '5', 50); push_button (c, ' ', 50);
push_button (c, '6', 50); push_button (c, ' ', 50);
push_button (c, 'B', 50); push_button (c, ' ', 50);
push_button (c, '7', 50); push_button (c, ' ', 50);
push_button (c, '8', 50); push_button (c, ' ', 50);
push_button (c, '9', 50); push_button (c, ' ', 50);
push_button (c, 'C', 50); push_button (c, ' ', 50);
push_button (c, '*', 50); push_button (c, ' ', 50);
push_button (c, '0', 50); push_button (c, ' ', 50);
push_button (c, '#', 50); push_button (c, ' ', 50);
push_button (c, 'D', 50); push_button (c, ' ', 50);
text_color_set(DW_COLOR_INFO);
dw_printf ("\nShould reject very short pulses.\n\n");
push_button (c, '1', 20); push_button (c, ' ', 50);
push_button (c, '1', 20); push_button (c, ' ', 50);
push_button (c, '1', 20); push_button (c, ' ', 50);
push_button (c, '1', 20); push_button (c, ' ', 50);
push_button (c, '1', 20); push_button (c, ' ', 50);
text_color_set(DW_COLOR_INFO);
dw_printf ("\nTest timeout after inactivity.\n\n");
/* For this test we use 1 second. */
/* In practice, it will probably more like 5. */
push_button (c, '1', 250); push_button (c, ' ', 500);
push_button (c, '2', 250); push_button (c, ' ', 500);
push_button (c, '3', 250); push_button (c, ' ', 1200);
push_button (c, '7', 250); push_button (c, ' ', 500);
push_button (c, '8', 250); push_button (c, ' ', 500);
push_button (c, '9', 250); push_button (c, ' ', 1200);
/* Check for expected results. */
push_button (c, '?', 0);
exit (EXIT_SUCCESS);
} /* end main */
#endif
/* end dtmf.c */