
~ 1 ~

APRStt Implementation Notes

Version 1.3 – DEVELOPMENT snapshot H -- December 2015

This is a development snapshot. Some features might be partially completed and/or not tested.
Everything is subject to change. Your feedback is welcome.

Very few hams have portable equipment for APRS but nearly everyone has a handheld radio that can
send DTMF tones. APRStt allows a user, equipped with only DTMF (commonly known as Touch Tone)
generation capability, to enter information into the global APRS data network.

You can find more information here: http://www.aprs.org/aprstt.html

It’s a great idea. It’s been around since the turn of the century but never caught on. Earlier
implementations required specialized hardware and were not easily adaptable to new situations.

This document explains how the APRStt concept was implemented in the Dire Wolf application. No
special hardware is required. Audio, from the receiver, is captured by the computer’s soundcard. DTMF
decoding is all in software. This will run on Windows and various flavors of Linux including single board
computers such as the Raspberry Pi, Beaglebone, cubieboard2, etc. Configuration options are very
flexible so it can be adapted to a wide variety of different situations.

http://www.aprs.org/aprstt.html

~ 2 ~

CONTENTS

1 A Brief History of APRStt ... 3

2 Modes of Operation .. 5

2.1 Traditional APRStt gateway .. 5

2.2 APRStt front end for Applications ... 5

2.3 DTMF to speech application framework ... 5

3 Touch Tone Transmission Overview ... 7

3.1 Standard Keypad Layout ... 8

3.2 Alternate Keypad Layout ... 9

3.3 Conversion Utilities ... 10

4 Callsigns & Object Names ... 12

4.1 Traditional callsigns ... 12

4.2 Object Names & Symbols .. 12

5 Locations ... 14

5.1 Point .. 14

5.2 Vector .. 15

5.3 Grid .. 16

5.4 UTM ... 17

5.5 USNG & MGRS ... 18

5.6 Maidenhead Grid Square Locator ... 19

5.7 QIKcom-2 Satellite Grid Squares ... 20

6 Comment / Status ... 22

7 Compact all numeric form (macros) ... 23

7.1 Text to Tone Sequence Conversions ... 27

8 Audible Responses .. 29

8.1 Invoking your own application. ... 30

9 Object Report Generation and Routing .. 32

9.1 The “corral” ... 33

9.2 Enhanced position reporting .. 33

9.3 Location Ambiguity ... 35

~ 3 ~

1 A Brief History of APRStt

Let’s first take a step back and quickly review the evolution of APRStt implementations.

2002 - APRStt for DOS

Ran on a DOS PC faster than 20 MHz. Used a DTMF decoder chip attached to the
parallel printer port.

ftp://ftp.tapr.org/aprssig/dosstuff/APRSdos/aprstt.txt

2009 - CSS Radio Spotter

There are several mentions of its planned debut at Dayton 2009 but no mention of it
after that.

http://www.eham.net/articles/21601

2010 - APRSspeak

One radio is connected to the soundcard, the DTMF decoding was done in software, and
responses were in voice. The second radio is connected to an external TNC attached
by serial port. Vanished since that time.

https://www.tapr.org/pdf/DCC2010-APRSSpeak-KA2UPW.pdf

2011 – APRS Touch Tone Python Scripts

Open source version written for LInux and using "festival" for speech. "Proof-of -
concept" not updated since 2011.

https://github.com/sshamilton/APRStt

2012 (?) - Tiny Trak4

Adding an optional DTMF decoder to this popular Tracker / Digipeater / TNC turns it into
an APRStt gateway

http://www.byonics.com/tinytrak4/

2013 - Dire Wolf, version 0.7

ftp://ftp.tapr.org/aprssig/dosstuff/APRSdos/aprstt.txt
http://www.eham.net/articles/21601
https://www.tapr.org/pdf/DCC2010-APRSSpeak-KA2UPW.pdf
https://github.com/sshamilton/APRStt
http://www.byonics.com/tinytrak4/

~ 4 ~

A DTMF decoder / APRStt translator is integrated with a “soundcard” TNC, APRS
digipeater, and IGate. Very flexible configuration can accommodate traditional and user
customizable tone sequences. Major deficiency is lack of audible response so you don't
know if tone sequence was received properly.

2015 - Dire Wolf, version 1.3

Tone sequences now produce responses with synthesized speech and/or Morse code.
Additional options allow more types of positions, callsign/object representations, custom
voice responses, and more. Results from the APRStt translator can be sent to any
combination of a transmitter, Internet Gateway, or attached applications. See related
document, APRStt-interface-for-SARTrack.pdf, for a complete example of how it could be
used.

Here is an example of how it was used during a Simulated Emergency Test:
https://groups.yahoo.com/neo/groups/direwolf_packet/conversations/topics/553

https://groups.yahoo.com/neo/groups/direwolf_packet/conversations/topics/553

~ 5 ~

2 Modes of Operation

2.1 Traditional APRStt gateway

In the traditional model, users send tone sequences with combinations of a callsign (or other object
name), location, and status/comment using the Touch Tone keypad. An audible response, using Morse
Code or speech, indicates whether the tone sequence was valid. This information is translated into an
APRS “object report” and transmitted, usually on a different radio channel.

2.2 APRStt front end for Applications

Rather than transmitting the APRS “object report” over the radio, it is sent directly to an attached
application such as SARTrack, Xastir, APRSISCE/32, or YAAC. These applications can respond with Morse
Code, synthesized voice, or APRS packets to the channel where the tones were heard and/or additional
radios.

2.3 DTMF to speech application framework

In this case, we eliminate the APRStt translator, in the illustration above, and the user-supplied
application is responsible for interpreting the tone sequences.

When a Touch Tone transmission is received, it is placed in the normal APRS packet format and sent to
any attached applications for processing. The data type identifier of “t” is used. The rest of the
information field is the raw Touch Tone key press data. This is temporary until the official APRS
standard has a better way for a dumb TNC, with a DTMF decoder, to convey raw touch tone data to a
client application.

 TNC

APRStt to
APRS object
translator

DTMF
decoder

Morse or
Speech

Radio 2 Radio 1

KISS or
AGW
network
protocol

APRStt to
APRS object
translator

DTMF
decoder

Morse or
Speech

APRS
application

Radio

~ 6 ~

This only gets sent to client applications. It is not sent over the air. The sample application “ttcalc”
provides an example of how you might develop your own application to process the DTMF tone
sequences and send a reply. Replies can be as AX.25 frames, Morse Code, or speech on multiple radio
channels.

~ 7 ~

3 Touch Tone Transmission Overview

All transmissions are a sequence of touch tone button presses concluded by the # button. If there are

multiple parts, they are separated by the * button. A complete transmission might look like this:

B3123456 * C1 * A9A2B42A7A7C71 #

You can think of * and # as being like commas and a period in a sentence.

 * is used only to separate the separate parts, which we call “fields” here.

 # means it is the end of a complete group to be processed together.

The first button press of each field identifies the type of field:

A = callsign or object characteristics
B = location data
C = comment text or status
D = message text – not defined anywhere, not implemented
0 - 9 = compact all numeric form, sometimes called “runner mode” (macros in this
 implementation)

All touch tone transmissions must contain a callsign or object name so we can associate the other data
with some name.

In many examples, the callsign is shown at the end like this:

B3123456 * C1 * A9A2B42A7A7C71 #

This is not a requirement. All of these are equivalent.

A9A2B42A7A7C71 * C1 * B3123456 #

A9A2B42A7A7C71 * B3123456 * C1 #

C1 * A9A2B42A7A7C71 * B3123456 #

Typically the callsign is shown at the end because it is convenient to store your callsign and the
terminating # in a DTMF memory. You manually press buttons for location and/or status information
then send your call from memory.

There are other cases where the opposite order would be more convenient. Suppose you were at a
fixed location reporting which runner, bicycle, canoe, parade vehicle, etc. is passing by. In this case, you
might manually enter the object information, on your HT keypad, and then send your location and the
terminating # from your HT memory.

Any partially accumulated touch tone sequence will be discarded after 5 seconds of no Touch Tone
activity. If you make a mistake just wait a while for it to be cleared out and start over.

~ 8 ~

How do we go about sending letters with a numeric keypad? There are multiple encoding methods used
in different situations.

3.1 Standard Keypad Layout

Letters are assigned to number keys using the same standard arrangement found on modern
telephones. Notice how the 7 and 9 keys have four letters each.

1

2
ABC

3
DEF

A

4
GHI

5
JKL

6
MNO

B

7
PQRS

8
TUV

9
WXYZ

C

* 0
space

D

There are three different encodings called:

 Multi-press -- Used for comments.

Letters are represented by one or more presses of the same key depending on their
order listed on the button. e.g. Press 5 key once for J, twice for K, thrice for L.

To specify a digit use the number of letters listed on the button plus one. e.g. Press 5
key four times to get digit 5. When two adjacent characters use the same key, insert
the "A" key as a separator.

 Two-key -- Used for callsigns.

Digits are represented by a single key press.

Letters (or space) are represented by the corresponding key followed by A, B, C, or D
depending on the order of the letter in the order listed.

This encoding allows the mixing of letters and digits.

 Two-digit -- Used for Maidenhead Grid Locators.

Digits are represented by a single key press.

Letters are represented by the corresponding key (2 through 9) followed by 1, 2, 3, or 4
depending on the order of the letter in the order listed.

~ 9 ~

You are probably wondering: How would we distinguish between the letter W or the
digits 9 1. It depends on the character position. We will explain in a later section.

Examples:

Character Multi-press Two-Key Two-Digit Comments

0 00 0 0

1 1 1 1 No letters on 1 button.

2 2222 2 2 3 letters -> 4 key presses for digit

9 99999 9 9

W 9 9A 91

X 99 9B 92

Y 999 9C 93

Z 9999 9D 94

space 0 0A n/a

There are no punctuation characters other than the space which is handled like the letters. There are no
“editing” key sequences. If you make a mistake, wait 5 seconds for the incomplete transmission to be
cleared out. If impatient, you could press # before adding the callsign and an invalid transmission will be
rejected.

3.2 Alternate Keypad Layout

The QIKcom-2 APRStt satellite project (http://aprs.org/qikcom-2.html) uses a different encoding for
callsigns. This is based on an older keypad layout where Q and Z were on the 1 button if present at all.

1
QZ

2
ABC

3
DEF

4
GHI

5
JKL

6
MNO

7
PRS

8
TUV

9
WXY

* 0
space

Callsigns are encoded as 6 digits corresponding to the buttons of the callsign characters. An additional 4
digits specify which of the possible characters are used in each case.

http://aprs.org/qikcom-2.html

~ 10 ~

This is best explained by example.

 W B 4 A P R Callsign.

 9 2 4 2 7 7 Button for each character above.
 1 2 0 1 1 2 Position for each character.
 0 for the digit.
 1 for first letter, 2 for second letter, etc.
 Space is like first letter for the 0 button.

The bottom line is treated as a base 4 number. When converted to base 10, it becomes 1558. The final
result would be 924277 1558. For callsigns shorter than 6 characters, we append spaces which are
represented by “0” for the button and 1 in the base 4 number because it is like the first letter for the
button.

APRStt 3.0 adds a shorter 3 character “suffix” format that can be used as an abbreviation if the gateway
already has the full callsign in memory. The encoding is similar but we use only the last 3 characters of
the callsign. Example:

 A P R Callsign suffix – last 3 characters.

 2 7 7 Button for each character above.
 1 1 2 Position for each character.
 0 for the digit.
 1 for first letter, 2 for second letter, etc.
 Space is like first letter for the 0 button.

When the base 4 number 112 is converted to decimal we get 22. The final result would be 277 22.

3.3 Conversion Utilities

All of these different types of encoding are confusing and some are not so easy to perform manually.
Two converter applications are provided to perform the conversions.

 text2tt – Converts text to various types of encodings sent over the air.

 tt2text – converts Touch Tone button sequences, sent over the air, to ordinary text.

Each evaluates the different possible conversions for the given values and prints the results for any
types of conversions that would be valid for the given data.

Examples of usage:

$ text2tt abcdefg 0123

Push buttons for multi-press method:

"2A22A2223A33A33340A00122223333" checksum for call = 5

Push buttons for two-key method:

"2A2B2C3A3B3C4A0A0123" checksum for call = 1

~ 11 ~

$ tt2text 2A22A2223A33A33340A00122223333

Could be either type of encoding.

Decoded text from multi-press method:

"ABCDEFG 0123"

Decoded text from two-key method:

"A2A222D3D3334 00122223333"

$ text2tt wb4apr

Push buttons for multi-press method:

"922444427A777" checksum for call = 9

Push buttons for two-key method:

"9A2B42A7A7C" checksum for call = 4

Push buttons for fixed length 10 digit method:

"9242771558"

$ tt2text 9242771558

Could be either type of encoding.

Decoded text from multi-press method:

"WAGAQ1KT"

Decoded text from two-key method:

"9242771558"

Decoded callsign from 10 digit method:

"WB4APR"

$ text2tt EM29QE78

Push buttons for multi-press method:

"3362222999997733777778888" checksum for call = 2

Push buttons for two-key method:

"3B6A297B3B78" checksum for call = 8

Push buttons for Maidenhead Grid Square Locator:

"326129723278"

$ tt2text 326129723278

Could be either type of encoding.

Decoded text from multi-press method:

"DAM1AWPADAPT"

Decoded text from two-key method:

"326129723278"

Decoded Maidenhead Locator from DTMF digits:

"EM29QE78"

~ 12 ~

4 Callsigns & Object Names

Each transmission must include a callsign or object name which boil down to the same thing.

4.1 Traditional callsigns

The following traditional formats are recognized. Upper case “A” means literally the “A” button. Lower
case letters are placeholders for button presses. “…” indicates it is variable length.

Att...ttvk - Full callsign in two key method, numeric overlay, checksum.
Att...ttvvk - Full callsign in two key method, letter overlay, checksum.

Annnvk - “Suffix” abbreviation with 3 digits, numeric overlay, checksum.
Annnvvk - “Suffix” abbreviation with 3 digits, letter overlay, checksum.

Annn - “Suffix” abbreviation with 3 digits. No overlay. No checksum.

A “suffix” abbreviation / overlay combination will be replaced by the corresponding full callsign if found
in memory of recent activity.

4.2 Object Names & Symbols

This is an implementation-specific extension to the “standard.” Even if this is never sent over the air, it
is still very useful combined with macros described later.

These new formats overcome several shortcomings in the standard:

 It is possible to enter 9 character object names, not just 6 character identifiers (callsigns).

 Checksums are not required. Imagine the difficulty in calculating the identifier checksum for
each bicycle whizzing by in a race!

 Symbols, other than a box with an overlay character, can be specified.

Notice how the traditional callsign formats always have a digit after the initial “A.” This leaves open the
opportunity to define other formats that have A, B, C, or D after the initial A.

Dire Wolf adds these unique extensions:

AAtt... - Object name, two key method, up to 9 characters. Object name may
 contain letters, digits, and space. No checksum.

AB1nn - Symbol from primary symbol table. Two digits nn are the
 same as in the GPSCnn generic address used as a destination.

~ 13 ~

AB2nn - Symbol from alternate symbol table. Two digits nn are the
 same as in the GPSEnn generic address used as a destination.

AB0nnvv - Symbol from alternate symbol table. Two digits nn are the
 same as in the GPSEnn generic address used as a destination.
 vv is an overlay digit or letter in two key method.

ACnnnnnnnnnn - Callsign represented by exactly 10 digits as defined in earlier section.
 This is the encoding used by the QIKcom-2 satellite.

ACnnnnn - Last 3 characters of callsign represented by exactly 5 digits as
 described in earlier section.
 The abbreviated form is replaced by an already known matching
 full callsign.
 If no matching full callsign is found, it is an error.

AD... - Possible future use for other object properties.

The symbol codes can be found in Appendix 2 of the APRS Protocol Reference.
http://www.aprs.org/doc/APRS101.PDF You can also get a list of them by running direwolf with the
“-S” (upper case S) command line option.

http://www.aprs.org/doc/APRS101.PDF

~ 14 ~

5 Locations

APRStt literature lists a wide variety of location formats which are still evolving. Early 2013, we found
this in the specification:

B0x One of 10 special positions

B1xy 1 digit XY (10 mi in 60 mi area) (default)

 (or 1 mi in 10 mi area)

 (or .1 mi in 1 mi area)

B2xxyy 2 digit XY (1 mi in 60 mi area) (default)

 (or .1 mi in 10 mi area)

 (or 60 ft in 1 mi area)

B3xxxyyy 3 digit XY (.1 mi in 60 mi area) (default)

 (or 60 ft in 10 mi area)

B4xxxxyyyy 4 digit XY (60 ft in 60 mi area) (default)

B5zzzmm at bearing zzz range mm miles

B6eeennn SAR UTM Grid - Easting and Northing

B7rrrmmm Road RRR, Milemark MMM

B8haaaoooo Space Format (hemisphere, MSB's of lAt and lOng

B9... Table Interpolation. Example B9nn for a list of

 100 named locations at Jamboree, then nn digits

 can specify any of those 99 locations

The Jamboree 2013 APRStt literature instructed people to use the Byyyxxx format. This doesn’t
correspond to any of the above which always have a fixed format identifier digit after the B. In August,
the spec was changed so that locations use the Y X (latitude, longitude) order rather than the previous X
Y order. This makes more sense because we usually use Latitude then Longitude order. UTM
coordinates are always X (easting) then Y (northing).

Trying to keep up with all of these variations would be quite a chore. Some are not very flexible. For
instance the “bearing” style has a resolution of 1 mile. Rather than being limited to a small number of
fixed formats, you can define your own in the configuration file.

None of these are built in. Instead they are completely configurable to meet your specific needs.

This implementation generalizes most of them into several very flexible types:

 Point – a specific location.

 Vector – bearing and distance from a specified point.

 Grid – a rectangular area, based on latitude and longitude.

 UTM – a rectangular area, based on distances in meters.

 USNG / MGRS – another representation based on UTM.

 Maidenhead Grid Square Locators.

5.1 Point

The more general point type implements these 3 standard types

 B0… ten positions

~ 15 ~

 B7… route / mile mark

 B9… hundred named locations

The configuration file format looks like this:

TTPOINT Bn… latitude longitude

Where,
B is literally the upper case B representing the B button press.
 n… is one or more digits.

In each case, the latitude and longitude can be listed as signed decimal degrees (negative for south or
west) or in degrees / minute / hemisphere format. The degree symbol is not part of ASCII so ^ is used
instead.

Examples:

TTPOINT B01 37^55.37N 81^7.86W -- special position 1 of 10

TTPOINT B7495088 42.605237 -71.34456 -- route 495, mile mark 88

TTPOINT B934 42.605237 -71.34456 -- location 34 out of 100

If the received data was “B934”, it would simply look for an exact match among the points listed.

5.2 Vector

The vector type has a starting point, bearing, and distance. Configuration file format:

TTVECTOR B5bbbddd… latitude longitude scale unit

Where,
 B is literally the upper case letter to match the B button press.
 5 must match the tone received after the B.
 bbb is a place holder for 3 digit bearing in degrees, clockwise from north.
 ddd… is a place holder for distance, at least 1 digit.
 Scale is a multiplier to apply to the received digits. This allows us to
 have fractions. For example distance of “1234” and a scale of
 0.01 would represent 12.34 km or miles.
 Unit is km, mile, or other common unit.

Example: Configuration file: for Hilltop Tower center. Exactly 3 digits are required for the bearing. In
this case the distance is also 3 digits.

TTVECTOR B5bbbddd 37^55.37N 81^7.86W 0.01 mi

Received data:

B5206070

~ 16 ~

This means 0.70 mile in the direction of 206 degrees (SSW). It should end up at the Archery & Target
Range.

5.3 Grid

The rectangular grid format has a variable number digits for latitude (y) and longitude (x). Each
configuration file item can have optional fixed digits that must match and x and y characters for the
coordinate positions.

Coordinates define the edges of the box area.

 Latitude for minimum value (y… = all zeros).
 Longitude for minimum value (x… = all zeros).
 Latitude for maximum value (y… = all nines).
 Longitude for maximum value (x… = all nines).

They can be any arbitrary locations but they correspond to fractional digits in these examples.

TTGRID B1xy 12.0 34.0 12.9 34.9

TTGRID B2xxyy 12.0 34.0 12.99 34.99

TTGRID B3xxxyyy 12.0 34.0 12.999 34.999

TTGRID B4xxxxyyyy 12.0 34.0 12.9999 34.9999

TTGRID Byyyxxx 37^50.00N 81^00.00W 37^59.99N 81^09.99W

Examples of received tones and resulting latitude and longitude:

 B100 12.0 34.0
 B101 12.0 34.1
 B102 12.0 34.2
 B109 12.0 34.9
 B189 12.8 34.9
 B199 12.9 34.9

The Byyyxxx example is the format mentioned in http://www.aprs.org/aprs-jamboree-2013.html,
version of mid February 2013. Note that the x, y order is reversed from the others. It’s all handled by
the same general code that treats the y digit positions as latitude and x positions as longitude.

The received touch tone sequence B533686 would be translated to 3755.33’ N 8106.86’ W.

Do you want to send coordinates in the X Y order or Y X order? This implementation doesn’t care. No
coding changes are required. Just change one line of the configuration file. You can even do bizarre
things like interleaving the coordinates (e.g. B2xyxy) but it’s probably not a sensible thing to do.

http://www.aprs.org/aprs-jamboree-2013.html

~ 17 ~

5.4 UTM

UTM coordinates use distances in meters rather than angles in degrees. The configuration file items
have this format:

TTUTM B6xxx…yyy… Zone [Scale [X-offset Y-offset]]

Where, 6 must match the first digit sent after B.
 xxx… is 1 to 6 number of lower case “x” characters as a placeholder for
 up to 6 “easting” (X coordinate) digits

yyy… is 1 to 7 number of lower case “y” characters as a placeholder for
 up to 7 “northing” (Y coordinate) digits.
Zone is the UTM zone and optional latitude band to indicate hemisphere.

 Scale is a multiplier to apply to the received digits. This allows us to
 drop trailing digits for less resolution.
 X-offset & Y-offset are added to the received data so leading digits can be
 omitted from the transmission.

How do we know if the coordinates are in the northern or southern hemisphere? A zone with only a
number is assumed to be northern hemisphere. It can also be suffixed with a latitudinal band of N, P, Q,
R, S, T, U, V, W, or X. It doesn’t matter which one because the Y coordinate is relative to the equator,
not the band. For the southern hemisphere, a suffix of C, D, E, F, G, H, J, K, L, or M must be used. Again,
it doesn’t matter which one because the Y coordinate is relative to 10,000 km south of the equator.

The simplest configuration file format would need room for 6 digits of “easting” (X) coordinate and 7
digits for the “northing” (Y) coordinate.

TTUTM B6xxxxxxyyyyyyy 19

Sample received data:

B63075094721178

That’s a lot of digits to enter. If your application doesn’t need resolution of a meter, you can drop the
last digit of each coordinate and specify a scaling factor for the transmitted string of digits. For example,
to get 10 meter resolution we can use only 5 and 6 digits with a scale factor of 10:

TTUTM B6xxxxxyyyyyy 19 10

That’s still pretty long. In many cases, the region of interest will not be that large so it is feasible to use a
smaller number of digits. For example, when searching a forest for a lost person, it might be possible to
express the entire region in a form like this:

 30xxx0 472yyy0

~ 18 ~

The xxx and yyy ranges would extend over a 10 x 10 km area with 10 meter resolution. Use a
configuration like this:

TTUTM B6xxxyyy 19 10 300000 4720000

Transmitted data can now be much more compact. E.g.

B6613601

This will get transformed into 306130 4726010

Notice that a received string could match multiple patterns. Does the received B533686 match pattern
Byyyxxx (location on grid) or B5bbbdd (bearing and 2digit distance)? The patterns are tested in the
order defined and the first match wins.

Two utilities, ll2utm and utm2ll, are included to convert between Latitude / Longitude and UTM
coordinates.

Examples:

$ ll2utm 43.775 11.25896

UTM zone = 32, hemisphere = N, easting = 681795, northing = 4849363

MGRS = 32TPP85 32TPP8149 32TPP818494 32TPP81804936 32TPP8179549363

USNG = 32TPP84 32TPP8049 32TPP817493 32TPP81794936 32TPP8179549363

$ utm2ll 32 681795 4849363

from UTM, latitude = 43.774999, longitude = 11.258957

$ utm2ll 32TPP81794936

from USNG, latitude = 43.774974, longitude = 11.258894

from MGRS, latitude = 43.774974, longitude = 11.258894

There are numerous on-line and downloadable coordinate converters available. You know how to use
Google to find them. If using Debian/Ubuntu/Raspbian, you can install one with:

sudo apt-get install geotranz

Dire Wolf is using some of the conversion functions from this package. “The product was developed
using GEOTRANS, a product of the National Geospatial-Intelligence Agency (NGA) and U.S. Army
Engineering Research and Development Center.” http://earth-info.nga.mil/GandG/geotrans/index.html

5.5 USNG & MGRS

These a different representation of UTM coordinates. USNG & MGRS are essentially the same but
results might differ by about a meter due to the slightly different mathematical conversion models used.
To reduce the number of digits that need to be sent, the zones are broken into 100 km squares
represented by two letters. Finally we have a variable number of digits depending on precision
requirements. The same number of digits (same precision) must be used for both easting and northing.

http://earth-info.nga.mil/GandG/geotrans/index.html

~ 19 ~

 32T PP 8179 4936

 Grid zone 100 km easting northing
 Square (right) (up)

For more details, see http://www.fgdc.gov/usng

The same location could be represented by any of these depending on the desired precision:

32T PP somewhere in 100 km x 100 km square
32T PP 8 4 10 km x 10 km square
32T PP 80 49 1 km x 1 km square
32T PP 817 493 100 m x 100 m square
32T PP 8179 4936 10 m x 10 m square – MOST COMMON
32T PP 81795 49363 1 meter x 1 meter square

Notice how the low order digits are truncated. There is no rounding when reducing to a smaller number
of digits. 49 is truncated to 4 rather than rounded up to 5. Truncating the lower digits means that the
resulting location is the lower left (south west) corner of the region. The number of digits implies the
size.

The configuration file items have this format:

TTUSNG B[n]xxx…yyy… zone_square

TTMGRS B[n]xxx…yyy… zone_square

Where, n is an optional digit which must match the first digit sent after B. 6 is suggested.
 xxx… is a placeholder to match 1 to 5 “easting” (X coordinate) digits

yyy… is a placeholder for “northing” (Y coordinate) digits. Must be same length as xxx…
zone_square is the zone and two letter square.

Configuration file example:

TTUSNG Bxxxxyyyy 32TPP

Notice that we will match “B” followed by exactly 8 digits. Sample received data:

B81794936

The zone & square, in the configuration, is combined with the received digits and we end up with
32TPP81794936.

5.6 Maidenhead Grid Square Locator

http://www.fgdc.gov/usng

~ 20 ~

Normally Maidenhead Grid Square Locators are written as alternating pairs of letters and pairs of digits
to the desired resolution. When sent by tones, the letters are replaced by pairs of digits as explained in
an earlier section.

The format must be the “B” button, optionally some other button, and some number of lower case x
characters to match the digits which will be sent over the radio.

TTMHEAD BAxxxxxx [prefix]

The optional prefix, of 10, 6 or 4 digits, is prepended to the received dgits and the result is converted
from digits to mixed letters digits like this:

 First 4 digits are converted to 2 letters.
 Next 2 digits are kept as is.
 Next 4 digits are converted to 2 letters.
 Next 2 digits are kept as is.

Examples:

Configuration File
TTMHEAD …

Received Touch
Tone digits, BA…

Result of combining them Normal representation

BAxxxxxxxxxxxx 3261 29 7232 78 3261 29 7232 78 EM 29 QE 78
BAxxxxxxxxxx 3261 29 7232 3261 29 7232 EM 29 QE
BAxxxxxx 3261 29 3261 29 EM 29
BAxxxx 3261 3261 EM

BAxx 3261297232 78 3261 29 7232 78 EM 29 QE 78

BAxxxxxx 326129 7232 78 3261 29 7232 78 EM 29 QE 78

BAxxxxxxxx 3261 29 7232 78 3261 29 7232 78 EM 29 QE 78

BAxxxxxx 3261 29 7232 3261 29 7232 EM 29 QE

Even with the greatest precision, of 8 characters, this represents a region roughly 0.28 mile (0.45 km)
high (north-south) and up to twice that wide. When converting to Latitude and Longitude we use the
center of the region.

5.7 QIKcom-2 Satellite Grid Squares

As described here, http://aprs.org/qikcom-2.html , the first two letters of a Maidenhead locator are
represented by two digits. This only includes about 1/3 of the Earth’s surface but it’s the part with
nearly all of the human population.

The format must be the “B” button, optionally some other button, and exactly four lower case x
characters to match the digits.

TTSATSQ BAxxxx

http://aprs.org/qikcom-2.html

~ 21 ~

For example, if we received the tone sequence “BA1819” it would be first translated to “FM19” and then
to the corresponding latitude and longitude.

5.8 Position Ambiguity

This specifies that the object report should have position ambiguity by trimming some of the least
significant digits from the latitude and longitude.

The format must be the “B” button, optionally some other button, and exactly one lower case x
character to match a digit.

This digit is the number of least significant digits to omit. The default is to omit no digits. Any value
greater than 4 is treated as 4.

TTAMBIG B[a]x

Where, a is an optional key press 0-9, A, B, C, or D.
 x is a single letter x, a placeholder for number of digits to omit.

~ 22 ~

6 Comment / Status

This implementation recognizes all standard types:

Cn - Exactly one digit indicates a predefined status.
 0 = (none, default)

 1 = off duty
 2 = enroute
 3 = in service
 4 = returning
 5 = committed
 6 = special
 7 = priority
 8 = emergency
 9 = custom 1

Cnnnnnn - Exactly 6 digits are a frequency.

Cttt…ttt - Anything else is general text in multi-press encoding.

You can replace any of the 9 default status messages like with configuration commands like this:

TTSTATUS 5 "Clue found"

TTSTATUS 6 "Subject found"

When added to the comment of the APRS Object Report, this status is preceded by “/”. This makes it
easy to distinguish status from any other parts of the comment.

Following earlier precedent for frequency, we add this extension:

Cnnn - Exactly 3 digits are a CTCSS tone. Use only the integer part and a leading
 0 if necessary to make exactly three digits. For example 74.4 Hz is represented
 by C074.

Notice how all of the standard encodings have a digit after the initial C tone. This leaves open room for
expansion by using A, B, C, or D as the second button press in the field, similar to what we did with the
callsigns.

CAttt…ttt - Enhanced comment that can include all ASCII characters.
 For each character, subtract 32 from the value and convert to two
 digit decimal value. Space becomes 00, etc.

~ 23 ~

7 Compact all numeric form (macros)

Pressing all those buttons can get pretty tedious and error prone. Suppose you wanted to use APRStt to
report positions of runners, bicycles, boats, or parade vehicles along some route. You might send a
sequence something like this to report that bicycle 123 is near predefined position 78 along the route;
the rider is injured and needs medical attention.

C8 * B978 * AB166 * AA2B4C5B3B0A123 #

C8 = predefined “emergency” comment
B978 = standard form for one of 100 defined locations.
AB166 = primary symbol table, bicycle.
AA… = object name “BIKE 123”

Try entering that on your HT keypad correctly as bicycles go whizzing by! There have been some
discussions about a very compact event-specific form that could be used for situations like this. It was
also desirable that the A, B, C, and D buttons would not be required because some radios do not have
them or can’t store them in DTMF memories. This lead to discussions of a “runner mode” with short
touch tone sequences like this:

 bbnnn…#

where,
 bb is a 2 digit location.
 nnn is the “runner” number with a configurable number of digits.

Rather than hard-coding numerous special cases for every new situation, a more flexible, and simple,
approach has been taken. The system operator can define new formats rather changing the source
code.

 Macros allow you to define very short transmission formats and their longer equivalent.

The TTMACRO configuration option is used to map compact all numeric fields into the longer standard
form before processing. The general form is:

TTMACRO x…y…z… Touch tone sequence with x, y, and z for substitutions.

Where, x…y…z… are specific digits that must match and/or the lower case letters
 x, y, or z as placeholders for separating a received digit sequence
 into fixed length pieces.

This should be easier to understand with a couple examples.

Configuration file: These are the actual characters, not some meta representation.

TTMACRO xxyyy B9xx*AB166*AA2B4C5B3B0Ayyy

~ 24 ~

Here we are saying that when we receive a touch tone field of any 5 digits, this rule will be applied. Take
the first two digits and remember them as x. Take the other 3 digits and remember then as y.
Substitute the received digits into the x and y positions in the definition.

To report bike 123 at location 78, simply press these buttons: 78123#.

There are five digits so it would match the macro pattern for five digits. xx would be 78 and yyy would
be 123.

 Received data: 78123

 Match to pattern: xxyyy
 Definition: B9xx*AB166*AA2B4C5B3B0Ayyy
 After substitution: B978*AB166*AA2B4C5B3B0A123

This expanded form would not be visible outside. It is not passed along to an attached client
application. It is just used internally. It is processed as if it had been heard over the air and converted to
an APRS Object. The object name would be “BIKE 123” and the location would be whatever was defined
with “TTPOINT B978 …”

Suppose you also wanted the ability to attach an optional status to the object. You could define a rule
on how to process a field with exactly 6 digits.

TTMACRO xxyyyz Cz*B9xx*AB166*AA2B4C5B3B0Ayyy

Here we are saying that when we receive a field of 6 digits, this rule will be applied. Take the first two
digits and remember them in the x variable. Take the next 3 digits and remember them as y.
Remember the final digit as z. Substitute the received digits into the x, y, and z positions in the
defintion. If we were to receive 781239#, xx would be 78, yyy would be 123, and z would be 9.

 Received data: 781239

 Match to pattern: xxyyyz
 Original pattern: Cz*B9xx*AB166*AA2B4C5B3B0Ayyy
 After substitution: C9*B978*AB166*AA2B4C5B3B0A123

Status would be set to “Custom 1.”

Alternatively, you might define a single digit macro to generate the status. This would be less error
prone.

TTMACRO z Cz

The transmitted touch tone sequence would then be:

 9*78123#

This is first separated, at the *, into two fields of “9” and “78123”. The field with one digit is expanded
by the macro rule for one digit. The field with five digits expanded as before. Again, we end up with

~ 25 ~

C9*B978*AB166*AA2B4C5B3B0A123

which is processed as if someone had punched all of that in manually.

Suppose there were multiple types of objects to track. It would be nice to have different name prefixes
and even display icons to easily distinguish them.

 Object numbers 100 – 199 = bicycle
 Object numbers 200 – 299 = fire truck
 Others = dog

Define these 3 rules:

TTMACRO xx1yy B9xx*AB166*AA2B4C5B3B0A1yy

TTMACRO xx2yy B9xx*AB170*AA3C4C7C3B0A2yy

TTMACRO xxyyy B9xx*AB180*AA3A6C4A0Ayyy

The touch tone sequence 78123# would match the first one because it requires 1 in the middle position.

The touch tone sequence 78223# would match the second one because it requires 2 in the middle
position. The object name is “FIRE 223” and the fire truck icon is used.

The touch tone sequence 78323# would match the third one because y in the middle position matches
anything and the earlier patterns did not catch it. The object name is “DOG 323” and the puppy dog
icon shows up on the map.

Macro expansion works on the field level so traditional forms and macros can be combined in a single
transmission. For example,

 C3*C146520*78223#

means the fire truck is “in service” and listening on 146.520 MHz.

Punch this in on the old keypad:

 9*01123#

 C3*C146520*02223#

 03323#

The troubleshooting output illustrates the transformation process.

~ 26 ~

Let’s take the result and feed it into the “decode_aprs” utility.
We see that the symbol is a fire truck and the “!T02!” is recognized as being location “02” from a list of
up to 100.

Suppose we wanted to process the QIKcom-2 format message. It’s not necessary to write any new
code. Just define a macro like this:

 TTMACRO xxxxzzzzzzzzzz BAxxxx*ACzzzzzzzzzz

The field of 14 digits would get broken in to groups of 4 and 10. The first 4 are processed as a satellite
grid location. The other 10 are treated as a callsign. Let’s look at what happens when this is heard:

*18199242771558#

~ 27 ~

The field of 14 digits matches a pattern which splits it into groups of 4 and 10 digits. The first 4 are
treated as a satellite square. The other 10 are processed as the new fixed length call format. It’s
converted to an object and transmitted.

7.1 Text to Tone Sequence Conversions

Constructing macro definitions containing callsign, object names, and symbols can be rather tedious and
error prone. For the callsign or object name, it might involve running the “text2tt” utility then copying
the result. For the symbols, you need a table from the back of the APRS Protocol Reference. I have one
in a binder on my shelf but most people probably don’t have it handy. Most people probably don’t.

A macro definition can contain these:

 AC{callsign}

The specified callsign is converted to the corresponding tone sequence in the fixed
length callsign format.

Example: AC{WB2OSZ}
Converted to: AC9226711598

 AA{objname}

The specified object name is converted to the corresponding tone sequence..

Example: AA{team 4}
Converted to: AA8A3B2A6A0A4

What is the difference between a callsign and an object name? They both end up in the
same place, the name in an APRS Object Report packet. A callsign is limited to 6
characters. A default SSID of “-12” is appended to it. An object name can be up to 9
characters and have embedded spaces. No SSID is appended.

 AB{symbol}

The symbol descriptions are searched for one that contains the given string. It is
replaced by the corresponding code.

~ 28 ~

Example: AB{canoe}
Converted to: AB135

Example: AB{Jet Ski}
Converted to: AB0835A

How do you know what symbols are available? Run “direwolf –S” (upper case S option)
to get a list of the symbol descriptions and their codes.

 CA{comment}

The specified text is converted to the enhanced comment format which can handle all
ASCII characters.

Let’s revisit our earlier example where we have:

 Object numbers 100 – 199 = bicycle
 Object numbers 200 – 299 = fire truck
 Others = dog

Instead of handcrafting these:

TTMACRO xx1yy B9xx*AB166*AA2B4C5B3B0A1yy

TTMACRO xx2yy B9xx*AB170*AA3C4C7C3B0A2yy

TTMACRO xxyyy B9xx*AB180*AA3A6C4A0Ayyy

It can be done in a much easier way:

TTMACRO xx1yy "B9xx*AB{bicycle}*AA{bike }yy"

TTMACRO xx2yy "B9xx*AB{fire truck}*AA{fire }yy"

TTMACRO xxyyy "B9xx*AB{dog}*AA{dog }yyy"

Note that the macro definition contains embedded spaces so it should be enclosed in quotes.

~ 29 ~

8 Audible Responses

Responses can use either Morse code or speech. The default is Morse code “R” for received correctly or
“?” for any sort of error.

Each of the audible responses can configured with a command of the following form:

TTERR msg_id method text

Where,

 msg_id is message identifier from the table below.

 method is either SPEECH or MORSE.

 text is what to send over the radio. Should be in quotes if more than one word.

Message Identifier Meaning

OK Valid touch tone sequence was processed.

D_MSG D was first char of field. Messages not implemented yet.

INTERNAL Internal error. Shouldn't happen.

MACRO_NOMATCH No definition for digit sequence received.

BAD_CHECKSUM Bad checksum on call.

INVALID_CALL Invalid callsign.

INVALID_OBJNAME Invalid object name.

INVALID_SYMBOL Invalid symbol specification.

INVALID_LOC Invalid location.

NO_CALL No call or object name included in the tone sequence.

INVALID_MHEAD Invalid Maidenhead Grid Square Locator.

INVALID_SATSQ Satellite square must be 4 digits.

SUFFIX_NO_CALL Suffix was used for an unknown callsign.

The default is equivalent to the following configuration file settings.

TTERR OK MORSE R

TTERR D_MSG MORSE ?

…

TTERR INVALID_SATSQ MORSE ?

To use speech, you must first install a speech synthesizer application and specify an appropriate script
file in your configuration file. Examples:

SPEECH dwespeak.bat -- for Windows

SPEECH dwespeak.sh -- for Linux

~ 30 ~

Complete details are in the Dire Wolf User Guide.

If you want voice responses, you could use something like this:

TTERR OK SPEECH "Message Received O K. "
TTERR D_MSG SPEECH "D type not implemented. "
TTERR INTERNAL SPEECH "Internal error. "
TTERR MACRO_NOMATCH SPEECH "No matching pattern for digit sequence. "
TTERR BAD_CHECKSUM SPEECH "Bad checksum on call. "
TTERR INVALID_CALL SPEECH "Invalid call sign. "
TTERR INVALID_OBJNAME SPEECH "Invalid object name. "
TTERR INVALID_SYMBOL SPEECH "Invalid symbol. "
TTERR INVALID_LOC SPEECH "Invalid location. "
TTERR NO_CALL SPEECH "No call or object name. "
TTERR INVALID_MHEAD SPEECH "Invalid Maidenhead Locator. "
TTERR INVALID_SATSQ SPEECH "Satellite square must be 4 digits. "
TTERR SUFFIX_NO_CALL SPEECH "Send full call before using suffix. "

8.1 Invoking your own application.

You might want to perform other processing besides generating an APRS Object Report packet.

You might want to generate an audible response based on the particular call, location, etc.

Both of these can be accomplished by specifying a command to be run when a valid tone sequence is
received. The configuration file option is TTCMD followed by the command to run. It can be a simple
command (appropriate for your operating system) or the name of something more interesting written in
bash, python, perl, or your other favorite language.

The command can use the values of these environment variables to change its behavior. If it generates
any text output, that is used as the response to the user.

Environment
Variable

Meaning Examples

TTCALL Callsign or object name. WB2OSZ

TEAM A

TTCALLSP

Callsign or object name split into separate
characters so speech synthesizer would not try
to pronounce it as a word.

W B 2 O S Z

A P R S

(You wouldn’t want it coming
out sounding like APE PURRS!)

TTCALLPH Callsign or object name. whiskey bravo two oscar

sierra zulu

TTSSID SSID to distinguish multiple objects with same
callsign.

12

~ 31 ~

TTCOUNT Number of times this call / object name heard.
1, for the first time, could be used to send a
greeting.

1

TTSYMBOL Symbol table/overlay and symbol. /’ for airplane
Js for Jet Ski

TTLAT Latitude. 39.202083

TTLON Longitude. -94.604167

TTFREQ Frequency from the Cnnnnnn tone sequence. 146.520MHz

TTCOMMENT Comment. TEMPUS FUGIT

TTLOC Original location if other that latitude and
longitude. This is useful because the original
might have specified a large region.

EM29QE78

32TPP81794936

19T 305440 4725830

TTSTATUS Status from the Cn tone sequence. Off duty

TTDAO Enhanced location description so you can
distinguish between predefined points, the
corral, etc.

!T12!

Configuration file example for Windows:

 TTCMD c:\strawberry\perl\bin\perl.exe sar.pl

Configuration file example for Linux:

 TTCMD sar.pl

This is the “sar.pl” file mentioned:

#!/usr/bin/perl

Simple script to generate custom speech responses for APRStt.

First, gather information of interest.

$name = $ENV{TTCALL};

$loc = $ENV{TTLOC};

$status = $ENV{TTSTATUS};

Change pronounciation of team names.

if ($name eq "TEAM A") { $name = "Team Alpha"; }

if ($name eq "TEAM B") { $name = "Team Bravo"; }

if ($name eq "TEAM C") { $name = "Team Charlie"; }

Extract the desired digits from the location.

($zone,$east,$north) = split " ", $loc;

$east = substr("000000" . $east, -4, 3);

$east =~ s// /g;

$north = substr("000000" . $north, -4, 3);

$north =~ s// /g;

~ 32 ~

Combine into string to be spoken.

print "$name, $east east, $north north. $status\n";

9 Object Report Generation and Routing

The tones received over the radio and configuration settings are combined to generate an APRS “Object
Report” packet looking something like this:

WB2OSZ-13>APDW13:;TEAM C *151247z4239.62N/07122.43We[19T 305440 4725830]

/Clue found !TB6!

 The source is the call of the gateway station.

 Destination is the software version.

 Data Type Indicator of “;” means object report.

 The object name is the APRStt user’s call or object name provided.

 Time stamp.

 Latitude, Longitude, and symbol.

 Comment. In this case it has 3 components:
o Original location specified.
o Status from the “Cn” tone sequence.
o Enhanced location information. We see the location tone sequence was “B6…”

The conversion is enabled by a command of this form:

TTOBJ rec-chan send-to [via-path]

Where,
 rec-chan is the channel where the DTMF decoder is listening.

 send-to indicates where the result should be sent. It can be one or more of
 these separated by commas.

 Transmit radio channel.

 APP - meaning send to any attached application(s).

 IG - meaning send to APRS-IS server if IGate is configured.

 via-path is the digipeater path used when transmitting. Must NOT contain any spaces.

Examples:

TTOBJ 1 0 WIDE2-1,WIDE1-1

TTOBJ 1 0

TTOBJ 1 APP,IG

~ 33 ~

In all of these examples, the DTMF decoder is listening on channel 1. In the first two cases APRS
packets will be transmitted on channel 0. It is possible, but unusual, for both channels to be the same.
You can optionally add a digipeater path. In the last case, the object reports are sent to any attached
applications and an APRS-IS server if the IGate feature is enabled but not transmitted over the radio.

APRS is inherently unreliable. We throw packets out there and, in most cases, don’t know if they were
heard by anyone. For this reason, the packets are transmitted multiple times with increasing intervals in
between. The first transmission is delayed by 3 seconds. The object report is sent again after delays of
16 seconds, 32 seconds, 64 seconds, 2 minutes, and 4 minutes. The time stamp remains constant
because it indicates when the information was new not when it is being passed along.

Sending information to an attached application or APRS-IS server is more reliable. This is done
immediately and only once.

9.1 The “corral”

APRStt users might not report their position. In this case, we only know they are in range of the
receiver. How do we represent their location? How can they be positioned on a map?

The traditional approach is to assign them arbitrary locations in the “corral.” Some implementations
always place this next to the gateway location. This implementation is a little more flexible. The corral
can be positioned in some other, preferably sparsely populated, location on the map.

TTCORRAL latitude longitude offset

In the first example below, the list starts at the top and grows downward. In the second example, we
start at the bottom and go up from there. In each case the spacing is 0.02 minute.

TTCORRAL 37^56.00N 81^7.00W 0^0.02S

TTCORRAL 37^55.50N 81^7.00W 0^0.02N

This has a couple unfortunate consequences. It gives the illusion that we know where the station is
located. It might be obvious when displayed on a map, but a text only display, built in to transceiver,
doesn’t make it clear. A suitable offset also depends on the map display scale. If zoomed out too far,
the stations will be piled on top of each other and unreadable.

9.2 Enhanced position reporting

APRS has many different ways of specifying a location:

 One of many predefined locations.

 x & y coordinates in some grid.

 Bearing and distance from a known point.

~ 34 ~

 Different size grid squares covering large areas.

 No known location.

All of these get converted to a specific latitude and longitude in the object report. The behavior is a
good approximation in some situations and backward compatible with existing systems, but it has some
disadvantages. In some cases, the conversion loses information. In some cases, the conversion supplies
a made up location. How can the receiving station tell the difference?

When looking at a map, you can make a pretty good guess what is in the “corral” due to an unknown
location. However, it is not clear to a station with a text only display such as TM-D710A. Actual
positions, and those assigned by the APRStt gateway look the same.

The APRStt gateway operator needs to set corral parameters such as starting location and spacing. A
good spacing for one display might not be so good for a different display size or zoom level. An APRStt-
aware application might want to want to use a different location for the corral, such as a table rather
than on a map, but it doesn't have a good way of telling whether the user provided a position or if the
Gateway supplied it.

Another case is where multiple objects might be at the same location. We might use APRStt to track
the movement of medical staff and special equipment at first aid stations. If each of the objects was
reported with the same location (e.g. B925 for first aid station 25), they would all be piled on top of each
other on a map. If an APRStt-aware application knew they were all at predefined location 25, it could
perform its own "corral" function to display them in a non-overlapping way.

The intention of APRS is to be a real time tactical information system, not just a bunch of icons on a
map. An application might want to keep track of what people and special equipment and are at each
location. This is difficult to do when everything gets boiled down to just a latitude and longitude.

I would like to propose a simple extension to retain more information for possible use by applications.
The idea is to add something indicating whether the location is unknown or one of the predefined
locations. This should be human readable so someone with a text-only display can instantly see that an
object is at first aid station 25 or the location is unknown (the corral).

Rather than making up something new, the "!DAO!" option already exists to add enhanced information
about the lat/lon location. The gateway would add another 5 characters to the end of the comment to
provide more clarification about how the location was derived. The formats might be:

 !T ! The location is unknown.
 (the "corral" lat/lon were assigned by the gateway.)

 !Tn ! The location is one of ten predefined
 locations (i.e. the B0n tone sequence)
 (where 'n' represents some digit 0-9.)

 !Tnn! The location is one of 100 predefined
 locations (i.e. the B9nn tone sequence)

 !TBn! The location was specified by some

~ 35 ~

 other method. n is the character following
 B in the location. For example, “!TB5!” indicates
 the location came from a bearing and distance.

Advantages:

 It is simple.

 It is uses an existing part of the protocol specification rather than making up something new.

 It is backward compatible. Most applications would just ignore these characters in the
comment.

 It is human readable. Someone with a text only display would recognize "!T25!" as being
location 25, e.g. first aid station 25. If you saw "!T !" you would know the actual location is
unknown and not to look for someone at the object coordinates.

An application, capable of recognizing this could use the information in a couple different ways.

It could override the object lat/lon and perform its own corralling based on the display size and zoom
level. One region for unknown locations ("!T "). Possibly other regions for checkpoints ("!T25!").

This also gets back to the principle that APRS is a real time tactical awareness tool, not just icons on a
map. Someone might want to know who is at first aid station 25. A suitable application could easily
display a list of objects that had "!T25!" in the comment.

9.3 Position Ambiguity for Maidenhead Locator, USNG, and MGRS

“Object Reports” always have a very specific Latitude/Longitude location. The original DTMF sequence
might represent a large area.

If using a Maidenhead Locator, we are specifying some rectangular area. The generated latitude and
longitude represent the center point. How large is the region? The original intent can be preserved by
putting the Maidenhead Locator in the “object report” packet somehow. Only the MIC-E and “Status
Report” formats have a standard way of representing this. Random text, in the comment, would be
instantly recognizable by a human, but without a standard representation, display applications probably
would not be able to take advantage of that extra information. I’ve seen references to putting it in
square brackets thusly, [cm87xi], so I will follow that convention until something better comes along.

When USNG/MGRS coordinates with few digits, we are also specifying a rectangular area. How big is it?

In both cases, the original location will be placed in the comment field surrounded by [and] characters.

9.4 Position Ambiguity for Object Report Latitude & Longitude

In other situations, you might want to apply position ambiguity by reducing the number of significant
digits in the latitude and longitude of the object report. This can be accomplished by defining a field
format with TTAMBIG and then using it with the desired number of position digits to omit in the APRS
object report.

