//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2019 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// -----------------------------------------------------------------------
//
//
// Some of this is based on:
//
// FX.25 Encoder
// Author: Jim McGuire KB3MPL
// Date: 23 October 2007
//
// This program is a single-file implementation of the FX.25 encapsulation
// structure for use with AX.25 data packets. Details of the FX.25
// specification are available at:
// http://www.stensat.org/Docs/Docs.htm
//
// This program implements a single RS(255,239) FEC structure. Future
// releases will incorporate more capabilities as accommodated in the FX.25
// spec.
//
// The Reed Solomon encoding routines are based on work performed by
// Phil Karn. Phil was kind enough to release his code under the GPL, as
// noted below. Consequently, this FX.25 implementation is also released
// under the terms of the GPL.
//
// Phil Karn's original copyright notice:
/* Test the Reed-Solomon codecs
* for various block sizes and with random data and random error patterns
*
* Copyright 2002 Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
*/
#include "direwolf.h"
#include
#include
#include
#include
#include // uint64_t
#include // PRIx64
#include
#include "fx25.h"
#include "textcolor.h"
#define NTAB 3
static struct {
int symsize; // Symbol size, bits (1-8). Always 8 for this application.
int genpoly; // Field generator polynomial coefficients.
int fcs; // First root of RS code generator polynomial, index form.
int prim; // Primitive element to generate polynomial roots.
int nroots; // RS code generator polynomial degree (number of roots).
// Same as number of check bytes added.
struct rs *rs; // Pointer to RS codec control block. Filled in at init time.
} Tab[NTAB] = {
{8, 0x11d, 1, 1, 16, NULL }, // RS(255,239)
{8, 0x11d, 1, 1, 32, NULL }, // RS(255,223)
{8, 0x11d, 1, 1, 64, NULL }, // RS(255,191)
};
/*
* Reference: http://www.stensat.org/docs/FX-25_01_06.pdf
* FX.25
* Forward Error Correction Extension to
* AX.25 Link Protocol For Amateur Packet Radio
* Version: 0.01 DRAFT
* Date: 01 September 2006
*/
struct correlation_tag_s {
uint64_t value; // 64 bit value, send LSB first.
int n_block_radio; // Size of transmitted block, all in bytes.
int k_data_radio; // Size of transmitted data part.
int n_block_rs; // Size of RS algorithm block.
int k_data_rs; // Size of RS algorithm data part.
int itab; // Index into Tab array.
};
static const struct correlation_tag_s tags[16] = {
/* Tag_00 */ { 0x566ED2717946107ELL, 0, 0, 0, 0, -1 }, // Reserved
/* Tag_01 */ { 0xB74DB7DF8A532F3ELL, 255, 239, 255, 239, 0 }, // RS(255, 239) 16-byte check value, 239 information bytes
/* Tag_02 */ { 0x26FF60A600CC8FDELL, 144, 128, 255, 239, 0 }, // RS(144,128) - shortened RS(255, 239), 128 info bytes
/* Tag_03 */ { 0xC7DC0508F3D9B09ELL, 80, 64, 255, 239, 0 }, // RS(80,64) - shortened RS(255, 239), 64 info bytes
/* Tag_04 */ { 0x8F056EB4369660EELL, 48, 32, 255, 239, 0 }, // RS(48,32) - shortened RS(255, 239), 32 info bytes
/* Tag_05 */ { 0x6E260B1AC5835FAELL, 255, 223, 255, 223, 1 }, // RS(255, 223) 32-byte check value, 223 information bytes
/* Tag_06 */ { 0xFF94DC634F1CFF4ELL, 160, 128, 255, 223, 1 }, // RS(160,128) - shortened RS(255, 223), 128 info bytes
/* Tag_07 */ { 0x1EB7B9CDBC09C00ELL, 96, 64, 255, 223, 1 }, // RS(96,64) - shortened RS(255, 223), 64 info bytes
/* Tag_08 */ { 0xDBF869BD2DBB1776LL, 64, 32, 255, 223, 1 }, // RS(64,32) - shortened RS(255, 223), 32 info bytes
/* Tag_09 */ { 0x3ADB0C13DEAE2836LL, 255, 191, 255, 191, 2 }, // RS(255, 191) 64-byte check value, 191 information bytes
/* Tag_0A */ { 0xAB69DB6A543188D6LL, 192, 128, 255, 191, 2 }, // RS(192, 128) - shortened RS(255, 191), 128 info bytes
/* Tag_0B */ { 0x4A4ABEC4A724B796LL, 128, 64, 255, 191, 2 }, // RS(128, 64) - shortened RS(255, 191), 64 info bytes
/* Tag_0C */ { 0x0293D578626B67E6LL, 0, 0, 0, 0, -1 }, // Undefined
/* Tag_0D */ { 0xE3B0B0D6917E58A6LL, 0, 0, 0, 0, -1 }, // Undefined
/* Tag_0E */ { 0x720267AF1BE1F846LL, 0, 0, 0, 0, -1 }, // Undefined
/* Tag_0F */ { 0x93210201E8F4C706LL, 0, 0, 0, 0, -1 } // Undefined
};
#define CLOSE_ENOUGH 8 // How many bits can be wrong in tag yet consider it a match?
// Needs to be large enough to match with significant errors
// but not so large to get frequent false matches.
// Probably don't want >= 16 because the hamming distance between
// any two pairs is 32.
// What is a good number? 8?? 12?? 15??
// 12 got many false matches with random noise.
// Even 8 might be too high. We see 2 or 4 bit errors here
// at the point where decoding the block is very improbable.
// After 2 months of continuous operation as a digipeater/iGate,
// no false triggers were observed. So 8 doesn't seem to be too
// high for 1200 bps. No study has been done for 9600 bps.
// Given a 64 bit correlation tag value, find acceptable match in table.
// Return index into table or -1 for no match.
// Both gcc and clang have a built in function to count the number of '1' bits
// in an integer. This can result in a single machine instruction. You might need
// to supply your own popcount function if using a different compiler.
int fx25_tag_find_match (uint64_t t)
{
for (int c = CTAG_MIN; c <= CTAG_MAX; c++) {
if (__builtin_popcountll(t ^ tags[c].value) <= CLOSE_ENOUGH) {
//printf ("%016" PRIx64 " received\n", t);
//printf ("%016" PRIx64 " tag %d\n", tags[c].value, c);
//printf ("%016" PRIx64 " xor, popcount = %d\n", t ^ tags[c].value, __builtin_popcountll(t ^ tags[c].value));
return (c);
}
}
return (-1);
}
void free_rs_char(struct rs *rs){
free(rs->alpha_to);
free(rs->index_of);
free(rs->genpoly);
free(rs);
}
/*-------------------------------------------------------------
*
* Name: fx25_init
*
* Purpose: This must be called once before any of the other fx25 functions.
*
* Inputs: debug_level - Controls level of informational / debug messages.
*
* 0 Only errors.
* 1 (default) Transmitting ctag. Currently no other way to know this.
* 2 Receive correlation tag detected. FEC decode complete.
* 3 Dump data going in and out.
*
* Use command line -dx to increase level or -qx for quiet.
*
* Description: Initialize 3 Reed-Solomon codecs, for 16, 32, and 64 check bytes.
*
*--------------------------------------------------------------*/
static int g_debug_level;
void fx25_init ( int debug_level )
{
g_debug_level = debug_level;
for (int i = 0 ; i < NTAB ; i++) {
Tab[i].rs = INIT_RS(Tab[i].symsize, Tab[i].genpoly, Tab[i].fcs, Tab[i].prim, Tab[i].nroots);
if (Tab[i].rs == NULL) {
text_color_set(DW_COLOR_ERROR);
dw_printf("FX.25 internal error: init_rs_char failed!\n");
exit(EXIT_FAILURE);
}
}
// Verify integrity of tables and assumptions.
// This also does a quick check for the popcount function.
for (int j = 0; j < 16 ; j++) {
for (int k = 0; k < 16; k++) {
if (j == k) {
assert (__builtin_popcountll(tags[j].value ^ tags[k].value) == 0);
}
else {
assert (__builtin_popcountll(tags[j].value ^ tags[k].value) == 32);
}
}
}
for (int j = CTAG_MIN; j <= CTAG_MAX; j++) {
assert (tags[j].n_block_radio - tags[j].k_data_radio == Tab[tags[j].itab].nroots);
assert (tags[j].n_block_rs - tags[j].k_data_rs == Tab[tags[j].itab].nroots);
assert (tags[j].n_block_rs == FX25_BLOCK_SIZE);
}
assert (fx25_pick_mode (100+1, 239) == 1);
assert (fx25_pick_mode (100+1, 240) == -1);
assert (fx25_pick_mode (100+5, 223) == 5);
assert (fx25_pick_mode (100+5, 224) == -1);
assert (fx25_pick_mode (100+9, 191) == 9);
assert (fx25_pick_mode (100+9, 192) == -1);
assert (fx25_pick_mode (16, 32) == 4);
assert (fx25_pick_mode (16, 64) == 3);
assert (fx25_pick_mode (16, 128) == 2);
assert (fx25_pick_mode (16, 239) == 1);
assert (fx25_pick_mode (16, 240) == -1);
assert (fx25_pick_mode (32, 32) == 8);
assert (fx25_pick_mode (32, 64) == 7);
assert (fx25_pick_mode (32, 128) == 6);
assert (fx25_pick_mode (32, 223) == 5);
assert (fx25_pick_mode (32, 234) == -1);
assert (fx25_pick_mode (64, 64) == 11);
assert (fx25_pick_mode (64, 128) == 10);
assert (fx25_pick_mode (64, 191) == 9);
assert (fx25_pick_mode (64, 192) == -1);
assert (fx25_pick_mode (1, 32) == 4);
assert (fx25_pick_mode (1, 33) == 3);
assert (fx25_pick_mode (1, 64) == 3);
assert (fx25_pick_mode (1, 65) == 6);
assert (fx25_pick_mode (1, 128) == 6);
assert (fx25_pick_mode (1, 191) == 9);
assert (fx25_pick_mode (1, 223) == 5);
assert (fx25_pick_mode (1, 239) == 1);
assert (fx25_pick_mode (1, 240) == -1);
} // fx25_init
// Get properties of specified CTAG number.
struct rs *fx25_get_rs (int ctag_num)
{
assert (ctag_num >= CTAG_MIN && ctag_num <= CTAG_MAX);
assert (tags[ctag_num].itab >= 0 && tags[ctag_num].itab < NTAB);
assert (Tab[tags[ctag_num].itab].rs != NULL);
return (Tab[tags[ctag_num].itab].rs);
}
uint64_t fx25_get_ctag_value (int ctag_num)
{
assert (ctag_num >= CTAG_MIN && ctag_num <= CTAG_MAX);
return (tags[ctag_num].value);
}
int fx25_get_k_data_radio (int ctag_num)
{
assert (ctag_num >= CTAG_MIN && ctag_num <= CTAG_MAX);
return (tags[ctag_num].k_data_radio);
}
int fx25_get_k_data_rs (int ctag_num)
{
assert (ctag_num >= CTAG_MIN && ctag_num <= CTAG_MAX);
return (tags[ctag_num].k_data_rs);
}
int fx25_get_nroots (int ctag_num)
{
assert (ctag_num >= CTAG_MIN && ctag_num <= CTAG_MAX);
return (Tab[tags[ctag_num].itab].nroots);
}
int fx25_get_debug (void)
{
return (g_debug_level);
}
/*-------------------------------------------------------------
*
* Name: fx25_pick_mode
*
* Purpose: Pick suitable transmission format based on user preference
* and size of data part required.
*
* Inputs: fx_mode - 0 = none.
* 1 = pick a tag automatically.
* 16, 32, 64 = use this many check bytes.
* 100 + n = use tag n.
*
* 0 and 1 would be the most common.
* Others are mostly for testing.
*
* dlen - Required size for transmitted "data" part, in bytes.
* This includes the AX.25 frame with bit stuffing and a flag
* pattern on each end.
*
* Returns: Correlation tag number in range of CTAG_MIN thru CTAG_MAX.
* -1 is returned for failure.
* The caller should fall back to using plain old AX.25.
*
*--------------------------------------------------------------*/
int fx25_pick_mode (int fx_mode, int dlen)
{
if (fx_mode <= 0) return (-1);
// Specify a specific tag by adding 100 to the number.
// Fails if data won't fit.
if (fx_mode - 100 >= CTAG_MIN && fx_mode - 100 <= CTAG_MAX) {
if (dlen <= fx25_get_k_data_radio(fx_mode - 100)) {
return (fx_mode - 100);
}
else {
return (-1); // Assuming caller prints failure message.
}
}
// Specify number of check bytes.
// Pick the shortest one that can handle the required data length.
else if (fx_mode == 16 || fx_mode == 32 || fx_mode == 64) {
for (int k = CTAG_MAX; k >= CTAG_MIN; k--) {
if (fx_mode == fx25_get_nroots(k) && dlen <= fx25_get_k_data_radio(k)) {
return (k);
}
}
return (-1);
}
// For any other number, [[ or if the preference was not possible, ?? ]]
// try to come up with something reasonable. For shorter frames,
// use smaller overhead. For longer frames, where an error is
// more probable, use more check bytes. When the data gets even
// larger, check bytes must be reduced to fit in block size.
// When all else fails, fall back to normal AX.25.
// Some of this is from observing UZ7HO Soundmodem behavior.
//
// Tag Data Check Max Num
// Number Bytes Bytes Repaired
// ------ ----- ----- -----
// 0x04 32 16 8
// 0x03 64 16 8
// 0x06 128 32 16
// 0x09 191 64 32
// 0x05 223 32 16
// 0x01 239 16 8
// none larger
//
// The PRUG FX.25 TNC has additional modes that will handle larger frames
// by using multiple RS blocks. This is a future possibility but needs
// to be coordinated with other FX.25 developers so we maintain compatibility.
static const int prefer[6] = { 0x04, 0x03, 0x06, 0x09, 0x05, 0x01 };
for (int k = 0; k < 6; k++) {
int m = prefer[k];
if (dlen <= fx25_get_k_data_radio(m)) {
return (m);
}
}
return (-1);
// TODO: revisit error messages, produced by caller, when this returns -1.
}
/* Initialize a Reed-Solomon codec
* symsize = symbol size, bits (1-8) - always 8 for this application.
* gfpoly = Field generator polynomial coefficients
* fcr = first root of RS code generator polynomial, index form
* prim = primitive element to generate polynomial roots
* nroots = RS code generator polynomial degree (number of roots)
*/
struct rs *INIT_RS(unsigned int symsize,unsigned int gfpoly,unsigned fcr,unsigned prim,
unsigned int nroots){
struct rs *rs;
int i, j, sr,root,iprim;
if(symsize > 8*sizeof(DTYPE))
return NULL; /* Need version with ints rather than chars */
if(fcr >= (1<= (1<= (1<mm = symsize;
rs->nn = (1<alpha_to = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
if(rs->alpha_to == NULL){
free(rs);
return NULL;
}
rs->index_of = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
if(rs->index_of == NULL){
free(rs->alpha_to);
free(rs);
return NULL;
}
/* Generate Galois field lookup tables */
rs->index_of[0] = A0; /* log(zero) = -inf */
rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
sr = 1;
for(i=0;inn;i++){
rs->index_of[sr] = i;
rs->alpha_to[i] = sr;
sr <<= 1;
if(sr & (1<nn;
}
if(sr != 1){
/* field generator polynomial is not primitive! */
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
/* Form RS code generator polynomial from its roots */
rs->genpoly = (DTYPE *)malloc(sizeof(DTYPE)*(nroots+1));
if(rs->genpoly == NULL){
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
rs->fcr = fcr;
rs->prim = prim;
rs->nroots = nroots;
/* Find prim-th root of 1, used in decoding */
for(iprim=1;(iprim % prim) != 0;iprim += rs->nn)
;
rs->iprim = iprim / prim;
rs->genpoly[0] = 1;
for (i = 0,root=fcr*prim; i < nroots; i++,root += prim) {
rs->genpoly[i+1] = 1;
/* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--){
if (rs->genpoly[j] != 0)
rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
else
rs->genpoly[j] = rs->genpoly[j-1];
}
/* rs->genpoly[0] can never be zero */
rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
}
/* convert rs->genpoly[] to index form for quicker encoding */
for (i = 0; i <= nroots; i++) {
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
}
// diagnostic prints
/*
printf("Alpha To:\n\r");
for (i=0; i < sizeof(DTYPE)*(rs->nn+1); i++)
printf("0x%2x,", rs->alpha_to[i]);
printf("\n\r");
printf("Index Of:\n\r");
for (i=0; i < sizeof(DTYPE)*(rs->nn+1); i++)
printf("0x%2x,", rs->index_of[i]);
printf("\n\r");
printf("GenPoly:\n\r");
for (i = 0; i <= nroots; i++)
printf("0x%2x,", rs->genpoly[i]);
printf("\n\r");
*/
return rs;
}
// TEMPORARY!!!
// FIXME: We already have multiple copies of this.
// Consolidate them into one somewhere.
void fx_hex_dump (unsigned char *p, int len)
{
int n, i, offset;
offset = 0;
while (len > 0) {
n = len < 16 ? len : 16;
dw_printf (" %03x: ", offset);
for (i=0; i