
2400 & 4800 bps PSK
for APRS / Packet Radio

WB2OSZ, April 2016

Updated May 2019 – MFJ-2400 compatibility

1200 BPS

Most APRS / amateur packet radio uses 1200 bit per second (bps) audio frequency shift keying (AFSK)
for historical reasons. The binary 1 and 0 bits are conveyed by switching between tones of 1200 and
2200 Hz. It looks like this:

You can see how the audio frequency is changing.

It was cheap and easy to implement using 1970’s (or earlier) technology. It has the advantage that it is
not very fussy about the audio channel and works with the microphone and speaker connections of any
transceiver designed for voice. However, it is not very efficient.

2400 BPS

We can get more bits per second through the same audio channel using more advanced techniques.
This is nothing new. Back in the 1990’s there were at least three commercial TNCs that allowed 2400
bits per second.

 MFJ-2400 which is an optional board for the MFJ-1270 or MFJ-1274.

 AEA PK232-2400.

 Kantronics KPC-2400.

http://www.mfjenterprises.com/Product.php?productid=MFJ-2400
http://www.repeater-builder.com/aea/pk232/pk232-2400-baud-dpsk-modem.pdf
http://www.brazoriacountyares.org/winlink-collection/TNC%20manuals/Kantronics/2400_modem_operators_guide@rgf.pdf

Were they compatible with each other? I don’t know. If not, that might help explain why 2400 bps
never gained much popularity.

They all used the EXAR XR-2123 PSK modem chip which implements the V.26 / Bell 201 standard.
Instead of different frequencies, there is a tone with a constant frequency. Information is conveyed by
shifting the phase. The audio looks like this:

In this case, we have an audio carrier of 1800 Hz. 1200 times a second, it can switch to 1 of 4 different
phases which represent 2 bits at the same time. (There are lots of PSK explanations out there. You
know how to use Google.)

The terms “baud” and “bits per second” are often used interchangeably because they are the same
number for the most common 1200 & 9600 speeds. Here we must be more careful about terminology.

Bits per second (bps) – obvious meaning.

Symbol – Time period when state of signal doesn’t change. For AFSK, there are two states (one
of two tones), conveying 1 bit per symbol. Phase shift keying, with 4 phases, can convey 2 bits
at a time.

Baud – Number of symbols per second.

In this case, we have a 1200 “baud” signal because the phase can shift up to 1200 times per second.
Each “symbol” can be 1 of 4 phases, representing 2 bits, so we end up with 1200 x 2 = 2400 bits per
second.

 “gen_packets” is a utility to generate APRS frames and put the audio into a file rather than transmitting
them over the radio. Here we generate 100 frames at 2400 bps.

$ gen_packets -B 2400 –n 100 -o test2400.wav

The beginning of the file looks like the waveform above. Increasing levels of random noise are added so
we can see how well the demodulator works under adverse conditions. About ¼ from the beginning,
we can see the increasing random noise level but the waveform is still recognizable.

http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Linear/XR2123.pdf
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.26ter-198811-I!!PDF-E&type=items

Near the end it is unrecognizable:

Dire Wolf has 4 different implementations of V.26 style PSK demodulators using two different
techniques, each with and without a bandpass filter in front.

Let’s see how well each of the demodulator configurations can handle this.

$ atest -B 2400 -J -P P test2400.wav | grep decoded

62 packets decoded in 0.550 seconds. 54.9 x realtime

$ atest -B 2400 -J -P Q test2400.wav | grep decoded

69 packets decoded in 0.660 seconds. 45.7 x realtime

$ atest -B 2400 -J -P R test2400.wav | grep decoded

80 packets decoded in 0.550 seconds. 54.9 x realtime

$ atest -B 2400 -J -P S test2400.wav | grep decoded

78 packets decoded in 0.680 seconds. 44.4 x realtime

(This is still under development, and there could be more fine tuning, so the exact numbers might be
different if you play along at home.)

If you had to pick only one, “R” is the best. In this test case. Under different conditions one of the
others might do better.

It is also possible to run all of them in parallel and have the duplicates removed.

$ atest -B 2400 -J -P PQRS test2400.wav

…

…

DECODED[1] 0:00.2975 WB2OSZ-15 audio level = 49 ||||

[0.1] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0001 of 0100

DECODED[2] 0:00.5968 WB2OSZ-15 audio level = 49 ||||

[0.1] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0002 of 0100

…

…

DECODED[78] 0:25.9367 WB2OSZ-15 audio level = 99 _|||

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0086 of 0100

DECODED[79] 0:26.2378 WB2OSZ-15 audio level = 98 __||

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0087 of 0100

DECODED[80] 0:27.7537 WB2OSZ-15 audio level = 102 __||

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0092 of 0100

DECODED[81] 0:28.0562 WB2OSZ-15 audio level = 103 __|_

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0093 of 0100

81 from test2400.wav

81 packets decoded in 1.910 seconds. 15.8 x realtime

Notice the “_” and “|” characters at the ends of the lines. These indicate how well each of the
demodulators did.

_ means no success

| means no errors, i.e. correct CRC

Near the beginning, where the signal is clean, we see “||||” meaning all of PQRS decoded the frame.
Toward the end, with a high noise level, “__||” indicates only the last two, R & S, were successful. Only
the “R” demodulator was able to understand the last frame decoded.

We have one more trick up our sleeves. There is an option to attempt fixing single bit errors.

$ atest -B 2400 -J -F 1 -P PQRS test2400.wav

…

…

DECODED[84] 0:26.2378 WB2OSZ-15 audio level = 98 [NONE] _:||

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0087 of 0100

DECODED[85] 0:27.4490 WB2OSZ-15 audio level = 101 [SINGLE] __:_

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0091 of 0100

DECODED[86] 0:27.7537 WB2OSZ-15 audio level = 102 [NONE] __||

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0092 of 0100

DECODED[87] 0:28.0562 WB2OSZ-15 audio level = 103 [NONE] __|:

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0093 of 0100

DECODED[88] 0:28.3617 WB2OSZ-15 audio level = 103 [SINGLE] ___:

[0.3] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0094 of 0100

DECODED[89] 0:29.2626 WB2OSZ-15 audio level = 105 [SINGLE] __::

[0.2] WB2OSZ-15>TEST:,The quick brown fox jumps over the lazy dog!

0097 of 0100

89 from test2400.wav

89 packets decoded in 2.120 seconds. 14.2 x realtime

Notice the new “:” character.

: means it was possible to get a valid CRC by changing one bit.

__|: means the R demodulator was error free. S was able to succeed by changing 1 bit.
 In this case we use the result from R.

___: means the S demodulator was able to get a good CRC by changing 1 bit.

By running multiple demodulators, tuned in different ways, we are able to get more error-free frames
than by using any one of them individually.

Running all 4 at once is currently the default for all platforms.

On a Raspberry Pi, model 2, this takes about 35% of one core when decoding realtime from the
soundcard input.

On a Raspberry Pi, model 1 B, this takes about 81% of the CPU.

If you are constrained by limited CPU power, you might want to select just one demodulator, probably R
based on the observations here. There are two different ways to do this.

 On the command line:

direwolf -B 2400 -J -P R

 In the configuration file:

MODEM 2400 V26B R

Compatibility?

An earlier version of the V.26 protocol specification listed two different alternatives for phase shifts.

Dibit Phase change, degrees

Alternative A Alternative B

00
01
11
10

0
+90

+180
+270

+45
+135
+225
+315

The V.26 ter (ter = Latin for third) revision only mentioned multiples of 90° and it was not obvious from
the XR-2123 data sheet that it supported both alternatives.

I went with Alternative A.

Three years later VK2TV sent me a sample of audio from the MFJ-2400 and it turns out they used
Alternative B. Did AEA and Kantronics do the same? We won’t know until someone tries. Does anyone,
out there, have one of them for compatibility testing?

Starting with Dire Wolf version 1.6, both alternatives are available. In your configuration file, use one of
these:

 MODEM 2400 V26A -- for compatibility with earlier versions.

 MODEM 2400 V26B -- for compatibility with MFJ-2400 and possibly others.

One the command line, use one of these options for channel 0:

 -j -- lower case, for compatibility with earlier versions.

 -J -- upper case, for compatibility with MFJ-2400 and possibly others.

4800 BPS

If we can distinguish between 4 different phases, why not go for 8? With a few minor modifications, a
V.27 style demodulator was also implemented. This uses the same 1800 Hz audio carrier. It can change
phase 1600 times per second so it is 1600 baud. The 8 phases can represent 3 bits at a time so we have
1600 x 3 = 4800 bits per second.

Four times faster than the old fashioned 1200 baud AFSK!

Once again, we will generate a test file with 100 frames and increasing noise.

$ gen_packets -B 4800 -n 100 -o test4800.wav

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.27ter-198811-I!!PDF-E&type=items

Here is a nice clean signal from near the beginning of the file. It’s hard to visualize what is going on here
but the computer has no problem figuring it out.

Remarkably, we can still decode en error-free frame with this level of noise about 80% from the
beginning of the file.

In this case the demodulator configurations are called T, U, V, and W. Let’s try them individually and all
together.

$ atest -B 4800 -P T test4800.wav | grep decoded

47 packets decoded in 0.260 seconds. 58.3 x realtime

$ atest -B 4800 -P U test4800.wav | grep decoded

51 packets decoded in 0.300 seconds. 50.5 x realtime

$ atest -B 4800 -P V test4800.wav | grep decoded

69 packets decoded in 0.290 seconds. 52.3 x realtime

$ atest -B 4800 -P W test4800.wav | grep decoded

72 packets decoded in 0.320 seconds. 47.4 x realtime

$ atest -B 4800 -P TUVW test4800.wav | grep decoded

72 packets decoded in 0.870 seconds. 17.4 x realtime

$ atest -B 4800 -F 1 -P TUVW test4800.wav | grep decoded

81 packets decoded in 1.140 seconds. 13.3 x realtime

Once again we see a similar pattern. If you don’t have much CPU power available, you might want to
pick just the third one, W, instead of running them all in parallel.

How well does it work over the radio?

The problem with VHF/UHF FM voice transceivers is that they are designed for voice, not digital data.
The transmitter uses pre-emphasis to boost the higher audio frequencies. The receiver uses de-

emphasis to level it out again. A high pass filter removes the CTCSS tones before they can reach the
speaker. A low pass filter takes out high frequencies not useful for voice.

The related document, A-Better-APRS-Packet-Demodulator-Part-1-1200-baud.pdf , goes into detail
about the problem this causes and one solution.

Most modern VHF/UHF mobile transceivers have a round 6 pin “data” connector. Remarkably the
connector type and pin-out is standardized across the major manufacturers. “Data” is not a very good
name because it is audio, not digital data. “External modem” would have been a much better name.
This bypasses the normal audio stages and provides wider audio bandwidth suitable for use with
modems for transmitting digital data.

Here is the spectrum for a 1200 bps AFSK
signal. As you would expect there are peaks
around 1200 and 2200 Hz.

At any instant we only need to decide which
one is stronger.

2400 bps 4 phase PSK.

There are 4 peaks. Is it related to using 4
phases? I dunno. I don’t have the theoretical
background to explain it.

Finally 4800 bps 8 phase PSK.

It’s wider and therefore more demanding of
the radio channel.

It also needs to distinguish between 8 different
signal states, not just 4, so it would be more
susceptible to various types of distortion.

These all easily fit into the voice frequency range, generally considered to be 300 – 3000 Hz. However,
the pre-emphasis, de-emphasis, and other filtering, found in most radios, all add distortion. You don’t
hear it with voice but it can cause deterioration of digital data making it less likely to decode properly.

Just for comparison, let’s look at standard 9600 baud. Keeping the scaling the same, for easy visual
comparison, it looks like this:

Note the peak at 4800 Hz. This corresponds to the maximum frequency of alternating 0 and 1 bits. The
upper end of the audio passband needs to extend to at least 5000 Hz.

It’s not as obvious how low we need to go. There is a peak around 200 so I suspect that a high pass
filter, intended to keep CTCSS frequencies away from the speaker, would cause issues.

Results

Let’s try it with real radios and see what happens.

 2400 bps PSK, over the radio, using the microphone and speaker connections, was a success.

 4800 bps was not successful with the same particular mix of transmitter and receiver. We
already discussed how it is more demanding of the audio channel properties.

 4800 bps was successful using the same transmitter (with Microphone input) and the PR9 pin of
the “data” connector of a different receiver.

Your mileage may vary.

