
Raspberry Pi APRS Page 1

Raspberry Pi Packet TNC,

APRS Digipeater, IGate

Version 1.3 – September 2015

In the early days of Amateur Packet Radio, it was necessary to use a “Terminal Node Controller” (TNC)
with specialized hardware. Those days are gone. You can now get better results at lower cost by
connecting your radio to the “soundcard” interface of a computer and running free software.

The Raspberry Pi (RPi) is a good platform for running a software TNC, APRS digipeater, and IGate. Why
use a larger computer and waste hundreds of watts of power? All you need to add is a USB Audio
Adapter ($8 or less) and a simple PTT circuit to activate the transmitter.

This document is a Quick Start guide for running Dire Wolf on the Raspberry Pi and describes special
considerations where it may differ from other Linux systems.

After completing the steps here, refer to the User Guide for more details on the Linux version.

Raspberry Pi APRS Page 2

Left: Connections to speaker and Microphone jack of transceiver.

Middle: Interface circuit with a timer to limit transmission time.

It uses the standard 9 pin connector found on most TNCs and trackers so the same radio-specific
cables can be used.

The two LEDs are for Data Carrier Detect (DCD) and the Push to Talk (PTT) signals.

The shape of the board was not intentional. It was just a scrap piece of perfboard left over from
another project.

Right: Raspberry Pi.

At the top is a USB audio adapter. The current software version can handle 3 audio interfaces
at the same time.

Lower left are GPIO connections for PTT and the DCD LED.

Raspberry Pi APRS Page 3

1 Install Appropriate Operating System... 5

1.1 If operating system is already installed. ... 5

1.2 New System Setup & Configuration .. 6

1.3 Optionally enable IPv6. ... 7

1.4 Make a backup of your SD card (optional).. 7

2 Install Dire Wolf .. 8

2.1 Install sound library. .. 8

2.2 Download Dire Wolf source code ... 8

2.3 Compile and Install.. 8

2.4 Get initial configuration file. ... 9

2.5 First Test .. 9

3 Interface for radio ... 11

3.1 Audio input / output ... 11

3.1.1 Signalink USB ... 12

3.1.2 Cheap USB audio adapters .. 12

3.1.3 Avoid USB hub for audio adapter ... 13

3.2 Determine “card” number for audio device ... 13

3.3 Transmitter PTT ... 14

3.4 Printed Circuit Board ... 16

3.5 Other Alternatives ... 17

4 Configure for Radio Interface.. 18

4.1 Audio Interface Device .. 18

4.2 PTT Method ... 18

4.3 Optional DCD Indicator ... 18

5 Run Dire Wolf application ... 19

5.1 Use with client applications .. 21

6 Other Common Configuration Changes .. 23

6.1 Automatic Startup ... 23

6.2 Digipeater Operation .. 23

6.3 Enable Beaconing .. 24

6.4 Internet Gateway (IGate) .. 24

7 Receive Decoding Performance and CPU Requirements .. 26

8 Troubleshooting .. 28

8.1 Before that time… ... 29

Raspberry Pi APRS Page 4

8.2 USB Hubs ... 29

8.3 Use with AX25 kissattach .. 30

Raspberry Pi APRS Page 5

1 Install Appropriate Operating System

Select a version of Linux that has hardware floating point support. Dire Wolf makes extensive use of
floating point calculations. Trying to use the slower software floating point will probably result in
disappointment.

The Raspbian “wheezy” distribution from http://www.raspberrypi.org/downloads is known to work with
the instructions here. I haven’t tried the others and don’t know how they might differ.

The Raspian operating system distribution comes with the gcc compiler and most required libraries pre-
installed. If you use a different operating system version, you might need to install a suitable compiler
and/or additional libraries.

1.1 If operating system is already installed.

If you already have a different operating system version, verify that gcc is configured to generate
hardware floating point code. Enter the “gcc –v” command and observe the result. Make sure that
“--with-fpu=vfp --with-float=hard” appears in the configuration.

pi@raspberrypi:~$ gcc –v

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/lib/gcc/arm-linux-gnueabihf/4.6/lto-wrapper

Target: arm-linux-gnueabihf

Configured with: ../src/configure -v --with-pkgversion='Debian 4.6.3-12+rpi1' -

-with-bugurl=file:///usr/share/doc/gcc-4.6/README.Bugs --enable-

languages=c,c++,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.6 --

enable-shared --enable-linker-build-id --with-system-zlib --libexecdir=/usr/lib

--without-included-gettext --enable-threads=posix --with-gxx-include-

dir=/usr/include/c++/4.6 --libdir=/usr/lib --enable-nls --with-sysroot=/ --

enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --

enable-gnu-unique-object --enable-plugin --enable-objc-gc --disable-sjlj-

exceptions --with-arch=armv6 --with-fpu=vfp --with-float=hard --enable-

checking=release --build=arm-linux-gnueabihf --host=arm-linux-gnueabihf --

target=arm-linux-gnueabihf

Thread model: posix

gcc version 4.6.3 (Debian 4.6.3-12+rpi1)

http://www.raspberrypi.org/downloads

Raspberry Pi APRS Page 6

1.2 New System Setup & Configuration

If you are starting with a brand new RPi, the lessons here: http://learn.adafruit.com/ are easy to follow
and will get you running quickly.

 https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi

 https://learn.adafruit.com/adafruits-raspberry-pi-lesson-2-first-time-configuration

 https://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup

 https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup

 https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh

 https://learn.adafruit.com/adafruit-raspberry-pi-lesson-7-remote-control-with-vnc

The last two are optional, depending on your situation. In my case, I have a headless (no monitor,
keyboard) Raspberry Pi in the radio “shack” which is accessed from other computers various places over
the network. The VNC software allows me to have a virtual desktop displayed on other computers. If
you are using a monitor / keyboard / mouse connected to the RPi, you won’t need to configure login by
ssh and VNC.

The audio system on the Raspberry Pi has a history of many problems. Every time I did a software
update, the behavior changed. Before October 13, 2013, the only way I could get it to work was with
pulseaudio. After a most recent software update and firmware upgrade, pulseaudio stopped working
(http://elinux.org/R-Pi_Troubleshooting#Removal_of_installed_pulseaudio) but the preferred method,
which never worked properly before, is now fine.

You might be dooming your efforts to failure if you skip this software & firmware update step.

sudo apt-get update

sudo apt-get dist-upgrade

sudo rpi-update

sudo reboot

Check the firmware version with this command. I’m getting good results with the Oct 12 2013 version
and later. Earlier versions were not satisfactory.

/opt/vc/bin/vcgencmd version

Pulseaudio was never right and it was even worse the last time I struggled with it. I believe it is no
longer included in the current version of Raspbian. Remove it just to be safe.

sudo apt-get remove --purge pulseaudio

sudo apt-get autoremove

rm -rf /home/pi/.asoundrc /home/pi/.pulse

At this point reboot to make sure you are running the latest versions.

sudo reboot

http://learn.adafruit.com/
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-2-first-time-configuration
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-3-network-setup
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-7-remote-control-with-vnc
http://elinux.org/R-Pi_Troubleshooting#Removal_of_installed_pulseaudio

Raspberry Pi APRS Page 7

1.3 Optionally enable IPv6.

You can enable IPv6 immediately by typing: “sudo modprobe ipv6”.

To start it up automatically after each reboot, edit /etc/modules and add a new line at the end
containing “ipv6” (without the quotes).

1.4 Make a backup of your SD card (optional)

After going through all of these steps, you might want to make a backup so you can get back to this
point quickly if the memory card gets trashed. Here’s how:
https://www.raspberrypi.org/forums/viewtopic.php?p=239331

https://www.raspberrypi.org/forums/viewtopic.php?p=239331

Raspberry Pi APRS Page 8

2 Install Dire Wolf

2.1 Install sound library.

First, install the “libasound2-dev” package with the following command:

sudo apt-get install libasound2-dev

Failure to install libasound2-dev step will result in a compile error resembling “audio.c:…: fatal error:
alsa/asoundlib.h: No such file or directory”

2.2 Download Dire Wolf source code

Download the source code, for the desired release, from https://github.com/wb2osz/direwolf/releases
and copy it to your Raspberry Pi. /home/pi is used as example here. If you put it somewhere else, you
will need to make suitable adjustments to the commands shown.

You can use either the .zip or .tar.gz version. The exact file name and unpacked path might vary if you
are using a beta test or development version. For the .zip version:

cd /home/pi

unzip direwolf-1.3.zip

cd direwolf-1.3

or for the .tar.gz version:

cd /home/pi

tar xfz direwolf-1.3.tar.gz

cd direwolf-1.3

Optionally obtain the most recent updates for the APRS TO-CALL version numbers and the new symbol
codes.

make tocalls-symbols

2.3 Compile and Install

Compile an install the application.

make

sudo make install

make install-rpi

You should now have files in these locations, under /usr/local, owned by root.

https://github.com/wb2osz/direwolf/releases

Raspberry Pi APRS Page 9

/usr/local/bin/direwolf The application.

/usr/local/bin/decode_aprs Utility to interpret “raw” data you might find on
http://aprs.fi or http://findu.com

/usr/local/bin/tt2text
/usr/local/bin/text2tt
/usr/local/bin/ll2utm
/usr/local/bin/utm2ll
/usr/local/bin/log2gpx
/usr/local/bin/gen_packets

Utilities related to APRStt gateway, UTM
coordinates, log file to GPX conversion, and test
packet generation.

/usr/share/applications/direwolf.desktop Application definition with icon, command to
execute, etc.

/usr/local/share/direwolf/tocalls.txt Mapping from destination address to system type.
Search order for tocalls.txt is first the current
working directory and then /usr/share/direwolf.

/usr/local/share/direwolf/symbolsX.txt
/usr/local/share/direwolf/symbols-new.txt

Descriptions and codes for APRS symbols.

/usr/share/direwolf/dw-icon.png Icon for the desktop.

/usr/local/share/doc/direwolf/*
/usr/local/man/man1/*

Various documentation.

You should also have these files, under /home/pi.

/home/pi/Desktop/direwolf.desktop Symbolic link to
/usr/share/applications/direwolf.desktop. This
causes an icon to be displayed on the desktop.

/home/pi/dw-start.sh Script to start Dire Wolf if it is not running already.

2.4 Get initial configuration file.

If this is the first time, you are installing Dire Wolf perform this step:

make install-conf

When upgrading from an earlier version, you will probably want to skip this step because it will wipe out
your earlier configuration file.

This step should have copied the initial configuration file to the home directory, /home/pi.

/home/pi/direwolf.conf Configuration file.
Search order is current working directory then the
user’s home directory.

2.5 First Test

http://aprs.fi/
http://findu.com/

Raspberry Pi APRS Page 10

Go to your home directory and try to run “direwolf.”

cd /home/pi

direwolf

You should see something like this, because we have not yet configured it for using an audio device.

Dire Wolf version …

Audio device for both receive and transmit: default

Could not open audio device default for input

No such file or directory

Pointless to continue without audio device.

We will perform the necessary configuration in a later step.

Raspberry Pi APRS Page 11

3 Interface for radio

APRS, or other packet radio, operation requires connections between your transceiver and computer.

(a) Received audio from receiver.

This can be very simple. All you need is a cable from the speaker of your radio to the
computer’s microphone or line in. Some people like to use audio isolation transformers
but I never found this to be necessary.

(b) Transmit audio to transmitter.

Audio output from the computer goes to the microphone input of your transceiver. A
direct connection might be acceptable in some cases but typically you would want a
trim pot to decrease the signal level and a capacitor (perhaps around 0.1 µF) to block
DC.

(c) Push to Talk (PTT) signal to activate transmitter.

Traditionally, this has often been with one of the control lines of an RS-232 serial port.
It would be possible to use a USB-to-serial adapter but there is a better way. The
Raspberry Pi has a bunch of general purpose input output (GPIO) pins.

 If you use a VOX circuit, to turn on transmitter automatically when audio is present, no
PTT connection would be necessary. You can also ignore the warning message about
PTT not being configured.

3.1 Audio input / output

The Raspberry Pi has built-in audio output but no audio input.

You can get a list of audio output devices with the “aplay -l” (that’s lower case L option) command.

pi@raspberrypi:~$ aplay –l

**** List of PLAYBACK Hardware Devices ****

card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]

 Subdevices: 8/8

 Subdevice #0: subdevice #0

 Subdevice #1: subdevice #1

 Subdevice #2: subdevice #2

 Subdevice #3: subdevice #3

 Subdevice #4: subdevice #4

 Subdevice #5: subdevice #5

 Subdevice #6: subdevice #6

 Subdevice #7: subdevice #7

card 0: ALSA [bcm2835 ALSA], device 1: bcm2835 ALSA [bcm2835 IEC958/HDMI]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

Raspberry Pi APRS Page 12

You can get a list of audio input devices with the “arecord -l” (again lower case L option) command:

pi@raspberrypi:~$ arecord –l

**** List of CAPTURE Hardware Devices ****

There aren’t any! It will be necessary to add some sort of sound input device.

3.1.1 Signalink USB

The Tigertronics SignaLink USB is a pricey solution but easy because it contains all of the interface
circuitry. Be sure to turn the “DLY” delay control completely counter-clockwise.

Don’t try using the SignaLink USB for 9600 baud! It doesn’t have enough bandwidth. See 9600 section
of the User Guide for more details.

3.1.2 Cheap USB audio adapters

A cheap USB audio adapter can also be used but the drivers and firmware can be little problematic.

I’m currently using this Syba adapter http://www.amazon.com/gp/product/B001MSS6CS successfully
with the Oct 12 2013 version firmware or later. The sticker on the package indicated it has a CMedia
HS100 chip (see http://www.cmedia.com.tw/ApplicationIndex/C1Serno-1/C2Serno-4.html) but “lsusb”
reports:

 Bus 001 Device 004: ID 0d8c:0139 C-Media Electronics, Inc.

The C-Media product id 0139 indicates it’s the CM108AH chip. The HS100 has a product id of 013C.

This one looks interesting because it has a short cable which provides more flexibility in the physical
arrangement of the various components, specifically using multiple devices at the same time..
http://www.adafruit.com/product/1475

“lsusb” reports this:

 Bus 001 Device 005: ID 0d8c:000c C-Media Electronics, Inc. Audio Adapter

 SignaLink USB Raspberry Pi
Transceiver

T
USB Audio

& PTT

http://www.amazon.com/gp/product/B001MSS6CS
http://www.cmedia.com.tw/ApplicationIndex/C1Serno-1/C2Serno-4.html
http://www.adafruit.com/product/1475

Raspberry Pi APRS Page 13

This appears to be the CM108 or CM109 chip. According to the CM108 datasheet, the product id can
vary from 0008 to 000f and is programmable by the MSEL and MODE pins. The CM109 datasheet says
the same thing so I don’t know how you can tell them apart.

It works fine on Windows 7 and Linux on a PC but I have not yet been able to get audio input working
properly on the RPi even with the latest (December 2014) firmware. I’d like to hear from anyone that is
successful.

There is a report of this one spewing out a lot of RFI at 144 MHz so you might want to avoid it even after
a properly working driver is available.

3.1.3 Avoid USB hub for audio adapter

Avoid putting a USB hub between the Raspberry Pi and the USB Audio adapter. I’ve received reports
that exactly the same configuration works fine with the direct connection and a significant number of
audio samples are lost when going through a hub.

3.2 Determine “card” number for audio device

After plugging in a suitable USB audio interface, you should see something like this, in response to the
“aplay –l” and “arecord –l” commands:

pi@raspberrypi:~$ aplay –l

**** List of PLAYBACK Hardware Devices ****

card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]

 Subdevices: 8/8

 Subdevice #0: subdevice #0

 Subdevice #1: subdevice #1

 Subdevice #2: subdevice #2

 Subdevice #3: subdevice #3

 Subdevice #4: subdevice #4

 Subdevice #5: subdevice #5

 Subdevice #6: subdevice #6

 Subdevice #7: subdevice #7

card 0: ALSA [bcm2835 ALSA], device 1: bcm2835 ALSA [bcm2835 IEC958/HDMI]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

 card 1: CODEC [USB Audio CODEC], device 0: USB Audio [USB Audio]

 Subdevices: 1/1

 Subdevice #0: subdevice #0

pi@raspberrypi:~$ arecord –l

**** List of CAPTURE Hardware Devices ****

 card 1: CODEC [USB Audio CODEC], device 0: USB Audio [USB Audio]

 Subdevices: 1/1

Raspberry Pi APRS Page 14

 Subdevice #0: subdevice #0

The built-in (output only) interface will normally be card 0 unless you did something to change the
order. The additional USB audio adapter will typically be card 1, as seen in the example above. If you
see a different number, you will have to modify a later step when we put the card number in the
configuration file.

3.3 Transmitter PTT

If you want to transmit, some method is needed to activate the transmitter push-to-talk (PTT) function.
Traditionally, this has been done with the RTS or DTR signal from a serial port.

 Possible alternatives include:

 Reconfigure the built in serial port to have the RTS control.

The Raspberry Pi has a built in serial port which is normally configured as a console. It is
possible to reconfigure this to be available for application use. In the default
configuration, it does not have the usual RTS/CTS flow control signals. As described
here, http://elinux.org/RPi_Serial_Connection#Handshaking_lines , it is possible to
reconfigure some of the GPIO lines for the RTS/CTS signals. I haven’t tried this.

 Use a USB to RS-232 converter cable to supply a full RS-232 port. You will need to put
something like this in the configuration file.

PTT /dev/ttyUSB0 RTS

 VOX operation where transmitter is activated by transmit audio signal. The SignaLink USB uses
this technique. (Homebrew circuit example: https://sites.google.com/site/kh6tyinterface/)

I do not recommend using the VOX built into transceivers because they are designed for voice
and keep the transmitter on much too long after the audio has stopped. The User Guide has a
detailed explanation.

 Use one of the General Purpose I/O (GPIO) pins. I’m currently using this along with the cheap
USB audio adapter.

CAUTION! The general purpose input output (GPIO) pins are connected directly to the
CPU chip. There is no buffering or other protection. The interface uses 3.3 volts and will
not tolerate 5 volt signals. Static discharge, from careless handing, could destroy your
Raspberry Pi.

There are many GPIO pins. How would you choose an appropriate one? These are my suggestions for
the best choices. The others have special functions such as UART, SPI, PWM, or I2C. A few others
changed positions between board revisions 1 & 2 which could cause confusion.

http://elinux.org/RPi_Serial_Connection#Handshaking_lines
https://sites.google.com/site/kh6tyinterface/

Raspberry Pi APRS Page 15

 P1-11 GPIO 17

 P1-15 GPIO 22

 P1-16 GPIO 23

 P1-18 GPIO 24

 P1-22 GPIO 25

The A+, B+, and model 2 have a larger connector with additional GPIO pins. Any of them would be
suitable:

 P1-29 GPIO 5

 P1-31 GPIO 6

 P1-32 GPIO 12

 P1-33 GPIO 13

 P1-35 GPIO 19

 P1-36 GPIO 16

 P1-37 GPIO 26

 P1-38 GPIO 20

 P1-40 GPIO 21

Here is a suggested circuit using a CMOS 555 timer (LMC555, TLC555, ICM7555, etc.) to limit
transmissions to about 10 seconds. Don’t try using the original 555 because it needs a minimum of 4.5
volts and we have only 3.3 here. The time can be increased by making the 10 µF capacitor larger. It’s
roughly 1 second for each µF.

Raspberry Pi APRS Page 16

 You could get by with only a resistor and transistor but a software failure could cause the transmitter to
be stuck on, jamming the radio channel, annoying other people, and possibly damaging the transmitter
from overheating.

Finally, put a command like this in the configuration file with the actual I/O signal being used.

 PTT GPIO 25

One person reported that the timeout did not work properly and the problem was solved by adding a
0.0.1 µf capacitor from pin 4 to ground. https://groups.yahoo.com/neo/groups/Raspberry_Pi_4-
Ham_RADIO/conversations/messages/4737

3.4 Printed Circuit Board

Here is a design for a printed circuit board https://github.com/jaymzx/RPi-WD-Packet-Interface

The README.md file contains a link to where you can order them.

https://groups.yahoo.com/neo/groups/Raspberry_Pi_4-Ham_RADIO/conversations/messages/4737
https://groups.yahoo.com/neo/groups/Raspberry_Pi_4-Ham_RADIO/conversations/messages/4737
https://github.com/jaymzx/RPi-WD-Packet-Interface

Raspberry Pi APRS Page 17

3.5 Other Alternatives

The KF5INZ “Easy Digi” interface http://www.aracc.org/EASYDIGI!.pdf keeps popping up in discussions
of interfaces. It uses audio transformers and an opto-isolator for PTT to break up ground loops. This
could help avoid issues with AC hum and RFI.

Audio transformers are fine for 1200 baud but should be avoided if you want to use 9600 which requires
more audio bandwidth. See 9600 section of the User Guide for more details.

http://www.aracc.org/EASYDIGI!.pdf

Raspberry Pi APRS Page 18

4 Configure for Radio Interface

We need to make a couple simple changes to the configuration file. Change to your home directory.

 cd /home/pi

You should find a file called “direwolf.conf.” Modify it with your favorite text editor, as explained in the
following steps.

4.1 Audio Interface Device

We previously determined the “card” number for the desired audio interface. Typically this will be 1.

Look in the “direwolf.conf” file for a line like this:

 # ADEVICE plughw:1,0

Remove the “#” from the beginning of the line. If the card number, found in the earlier step, is not 1,
use that number instead.

4.2 PTT Method

Look in “direwolf.conf” for a line like this:

PTT GPIO 25

Assuming you are using GPIO 25 for the PTT control, simply remove the “#” from the beginning of the
line. If using some other PTT method, refer to the User Guide for a discussion of other possibilities.

4.3 Optional DCD Indicator

If you would like a data carrier detect (DCD) LED to light up when it looks like a signal is present, add a
line like this:

DCD GPIO -24

This means drive GPIO 24 to ground for signal present. Connect an LED like this:

 Pin 18 (GPIO 24) ---- (cathode) LED (anode) ---- 270 ohm resistor ---- 3.3 volts

If using the printed circuit board mentioned earlier, use the opposite polarity because we want a
positive signal to turn on the LED.

DCD GPIO 24

Raspberry Pi APRS Page 19

5 Run Dire Wolf application

Start up the application with the desktop icon or from the command line:

direwolf

Just run it as an ordinary user. There is no need to run it as root.

Typical results will look something like this:

Let’s examine each section.

On the first line, we have the application version.
Next we have confirmation of the audio device being used.

Raspberry Pi APRS Page 20

The modem is configured for standard 1200 baud operation.

Dire Wolf version 1.2

Audio device for both receive and transmit: plughw:1,0

Channel 0: 1200 baud, AFSK 1200 & 2200 Hz, F, 44100 sample rate.

This is a summary of the interfaces available for client applications.

Use -p command line option to enable KISS pseudo terminal.

Ready to accept KISS client application on port 8001 ...

Ready to accept AGW client application 0 on port 8000 ...

This shows that the station is operating as an Internet Gateway and has successfully connected to a
server. A URL is provided to check on the server status. “[ig]” at the beginning of the line indicates a
response from the IGate server.

Now connected to IGate server noam.aprs2.net (2607:fc18:0:3::114)

Check server status here http://[2607:fc18:0:3::114]:14501

[ig] # aprsc 2.0.14-g28c5a6a<0x0d><0x0a>

[ig] # logresp WB2OSZ-5 verified, server T2CMH<0x0d><0x0a>

This is a beacon, identifying the station. “[0L]” means it is transmitting on radio channel 0 at low
priority. Notice that transmitted lines are displayed in magenta.

[0L] WB2OSZ-5>APDW11,WIDE1-1,WIDE2-1:!4237.14NS07120.83W#

 PHG7140Raspberry Pi digpeater

Here we are receiving a nearby station directly. “[0]” means it was heard on radio channel 0. Received
signals are in green.

N5PZ audio level = 5 [NONE]

[0] N5PZ>T2SW9T,WIDE1-1,WIDE2-1:`c-9n5$>/'"4R}|!3&9'?|!wRB!|3

What to all those strange characters mean? The next few lines contain the decoded information in
human readable form. In this example, the last line is telemetry data.

MIC-E, normal car (side view), Byonics TinyTrack3, In Service

N 42 37.9454, W 071 17.2936, 25 MPH, course 108, alt 194 ft

Seq=18, A1=479, A2=576

This packet is a candidate for digipeating so we retransmit it. “[0H]” means it is being transmitted on
channel 0. Digipeated packets go out at a higher priority. Notice how “WIDE1-1” was replaced by
“WB2OSZ-5*” so the actual path taken can be determined.

[0H] N5PZ>T2SW9T,WB2OSZ-5*,WIDE2-1:`c-9n5$>/'"4R}|!3&9'?|!wRB!|3

Now we hear another station. But this time it is not direct. We are actually hearing a digipeater. It is
not a candidate for digipeating because the via path has been all used up. In this case, the last line is the
comment.

Raspberry Pi APRS Page 21

Digipeater W1MHL audio level = 9 [NONE]

[0] N2PGD-14>APX205,N1HRK-15,WIDE1,W1MHL*,WIDE2:=4149.61N/07123.98W#

 PHG2200XASTIR-Linux<0x0d>

Position, DIGI (white center), Xastir, 4 W height=40 0dBi omni

N 41 49.6100, W 071 23.9800

XASTIR-Linux

Now we hear the first station again, but from a digipeater, not directly. The digipeater did not insert its
own call so we don’t know who retransmitted the packet.

Digipeater WIDE1-1 audio level = 7 [NONE]

[0] N5PZ>T2SW9T,WIDE1-1*,WIDE2-1:`c-9n5$>/'"4R}|!3&9'?|!wRB!|3

MIC-E, normal car (side view), Byonics TinyTrack3, In Service

N 42 37.9454, W 071 17.2936, 25 MPH, course 108, alt 194 ft

Seq=18, A1=479, A2=576

This is also a candidate for digipeating because “WIDE2-1” has not been used up yet. However, we
transmitted this same packet within the past 30 seconds so the duplicate is dropped.

Digipeater: Drop redundant packet.

That’s all you will see. No flashy graphics. No maps. No user interaction. But loads of valuable
information for monitoring activity and troubleshooting problems.

Dire Wolf is just a replacement for a TNC. To do more interesting things, you will need an application
such as APRSISCE/32, UI-View32, Xastir, APRS-TW, YAAC, SARTrack, RMS Express, etc.

5.1 Use with client applications

Client applications can run on different computers and communicate with Dire Wolf over your local
network. For example, you might have a Raspberry Pi in your “shack,” in a cold damp basement,
connected to your radio equipment. You might want to use a client application (such as APRSIS32,
YAAC, or Xastir) on a laptop in a more comfortable location, perhaps next to the pool or fireplace. Here
is an example of how you could configure APRSISCE/32 in this situation.

From the Configure menu, pick Ports New Port…

Choose type of AGW and give it a meaningful name.

Raspberry Pi APRS Page 22

Click on Create and pick port type of TCP/IP.

Enter the IP address of the Raspberry Pi, and the default port of 8000.

Raspberry Pi APRS Page 23

6 Other Common Configuration Changes

6.1 Automatic Startup

You probably want your TNC / application server / digipeater to start up automatically after a power
interruption.

If you followed the installation steps above, you should have a file named dw-start.sh in your home
directory. Run the “crontab –e” command and add a line like this:

* * * * * /home/pi/dw-start.sh >/dev/null 2>&1

This script will run once per minute. Dire Wolf is started automatically if not running already. If it
crashes, or is terminated for any other reason, it will be restarted. A log of restarts can be found in
/tmp/dw-start.log.

6.2 Digipeater Operation

Edit the /home/pi/direwolf.conf file and look for a section like this:

Station identifier for this channel.

Multiple channels can have the same or different names.

Naturally it must be up to letters and digits with an optional ssid.

The APRS specification requires that it be upper case.

Example (don't use this unless you are me): MYCALL WB2OSZ-5

MYCALL NOCALL

Change “NOCALL” to your ham radio call and optional SSID.

Next, look for a section like this:

#---

---------- Example 1: Typical digipeater ----------

#---

For most common situations, use something like this by removing

the "#" from the beginning of the line.

To disable digipeating, put # at the beginning of the line.

#DIGIPEAT 0 0 ^WIDE[3-7]-[1-7]$ ^WIDE[12]-[12]$

Raspberry Pi APRS Page 24

Remove the “#” character from the beginning of the last line shown above. It is necessary to stop and
restart the application to notice configuration file changes.

Here is an example of what you should see:

Dark green: Information about the station we heard. Either the originating station or a digipeater.

Green: Raw received data. Notice that the digipeater field contains “WIDE1-1.”

Blue: An explanation for troubleshooting. The destination (APWW10) is used to determine the type of
system generating the signal.

Magenta: This is the re-transmitted packet. Notice that the digipeater field now contains “WB2OSZ-5*.”
The “*” indicates that it has been used up and won’t be digipeated again.

6.3 Enable Beaconing

Be sure that MYCALL has been set as in previous step.

Look for a section like this in direwolf.conf file.

PBEACON delay=0:15 every=30 overlay=S symbol="digi" lat=42^37.14N lon=071^20.83W

 power=50 height=20 gain=3 comment="Chelmsford MA" via=WIDE1-1,WIDE2-1

PBEACON delay=10:15 every=30 overlay=S symbol="digi" lat=42^37.14N lon=071^20.83W

 power=50 height=20 gain=3 comment="Chelmsford MA"

PBEACON delay=20:15 every=30 overlay=S symbol="digi" lat=42^37.14N lon=071^20.83W

 power=50 height=20 gain=3 comment="Chelmsford MA"

Modify this for your particular situation before removing

the # comment character from the beginning of the lines above.

Remove the “#” comment character from the beginning of the “PBEACON” lines. Make necessary
adjustments to latitude, longitude, comment, etc. These options, and more, are described in the User
Guide.

Note that each position beacon command must be on a single line. Multiple lines are shown above due
to page width limitations.

6.4 Internet Gateway (IGate)

Raspberry Pi APRS Page 25

Dire Wolf can serve as a gateway between the radio network and servers on the Internet. This allows
information to be retrieved from locations such as http://aprs.fi or http://findu.com. Information can
optionally be relayed from the servers, through your station, and on to the radio.

First you need to specify the name of a Tier 2 server. The current preferred way is to use one of these
regional rotate addresses:

 noam.aprs2.net - for North America

 soam.aprs2.net - for South America

 euro.aprs2.net - for Europe and Africa

 asia.aprs2.net - for Asia

 aunz.aprs2.net - for Oceania

Each name has multiple addresses to achieve load balancing and resiliency. Visit http://aprs2.net/ for
the most recent information. You also need to specify your login name and passcode. For example:

IGSERVER noam.aprs2.net

IGLOGIN WB2OSZ-5 123456

Contact the author if you can’t figure out how to generate a passcode for your ham radio call.

If you want to transmit information from the servers, you need to specify the radio channel and the via
path for the packet header. Example:

IGTXVIA 0 WIDE1-1,WIDE2-1

You might want to apply a filter for what packets will be obtained from the server. Example:

IGFILTER m/50

Read more about filters available here:

 http://www.aprs-is.net/javaprsfilter.aspx

Finally, we don’t want to flood the radio channel. The IGate function will limit the number of packets
transmitted during 1 minute and 5 minute intervals. If a limit would be exceeded, the packet is dropped
and warning is displayed in red.

IGTXLIMIT 6 10

http://aprs.fi/
http://findu.com/
http://aprs2.net/
http://www.aprs-is.net/javaprsfilter.aspx

Raspberry Pi APRS Page 26

7 Receive Decoding Performance and CPU Requirements

As Dire Wolf evolved over the years, a lot of effort has gone into continual improvement of the decoder
performance. How do we measure this in an objective repeatable fashion? Some contrived lab test
measuring bit error rates vs. signal to noise ratios doesn’t replicate the real world problems that we
encounter. The de facto standard is the TNC Test CD from WA8LMF. It contains recordings of almost 26
minutes with about 1000 packets.

Rather than running it real-time, the CD was “ripped” to files so we can process it quicker and easier. In
the test below, we are using the same decoder that is in Dire Wolf, it’s just repackaged into a separate
application, called “atest,” which reads from an audio file instead of the soundcard.

As the demodulator performance went up slowly, the amount of CPU power required rose quicker. To
get from 963 packets decoded up to 988, the required CPU time more than doubled. The times below
are for a Raspberry Pi, model B.

Decoder atest options Packets
decoded

from Track 2

Seconds
to process

Comments

A -P A 963 436 Original

B -P B 964 572

C -P C 969 729

D -P D 921 226 This was fine tuned for 300 baud and not
intended for 1200 baud.

E -P E 988 894 New in version 1.2

F -P F 963 275 Only for 1200 baud, 1200/2200 Hz,
44100 sample rate.

Was previous default for Raspberry Pi.

This is not an issue for a typical laptop or desktop computer which are about an order of magnitude
faster and have floating point vector processing units that can perform multiple operations
simultaneously.

For slow computers, a special case demodulator, called “F” (for fast), was added. Rather than being
general to handle all cases, it was fine tuned to handle only one specific case. This was the default for
the Raspberry Pi in earlier versions.

In version 1.2 we tried something new to compensate for the imbalance between the two audio tones.
The separate document, “A Better APRS Packet Demodulator,” explains this in detail. We could
squeeze out a few more error-free frames but the CPU usage continues to climb.

Raspberry Pi APRS Page 27

Decoder atest options Packets
decoded

from Track 2

Seconds
to process

Comments

E+ -P E+ 1008 981

F+ -P F+ 972 363

CPU usage is getting rather high. For the “E+” case, Dire Wolf is taking about 2/3 of the CPU capacity
just to receive. Additional bursts of processing are required to transmit and communicate with attached
applications. The operating system needs to talk to the soundcard and other devices. It can’t keep up.

We add a new option, “-D,” to divide the audio sample rate by the specified integer. The amount of CPU
power required drops dramatically without too much impact on the demodulator performance.

Decoder atest options Packets
decoded

from Track 2

Seconds
to process

Comments

E -P E 988 894 Default rate.

E -P E -D 2 985 348 Divide audio sample rate by 2.

E -P E -D 3 977 237 Divide audio sample rate by 3.

E+ -P E+ 1008 981 Default rate.

E+ -P E+ -D 2 1005 401 Divide audio sample rate by 2.

E+ -P E+ -D 3 1006 275 Divide audio sample rate by 3.
 ** New default for version 1.2. **

E+ -P E+ -D 4 1001 231 Divide audio sample rate by 4.

It’s a win-win situation. More packets decoded in less time.

You can change it, individually per channel in the configuration file. On a Raspberry Pi, the audio sample
rate is now divided by 3 by default. The following are equivalent in version 1.2.

MODEM 1200
MODEM 1200 E+
MODEM 1200 E+ /3

Raspberry Pi APRS Page 28

8 Troubleshooting

First check the audio gain on your input device. I’ve always found it necessary set it at the maximum or
fairly high. In one case, with a new USB audio adapter, the initial microphone input gain was set to zero.

Different systems may have different applications for configuring the sound system. If using “alsamixer”
follow this procedure:

 Press F6 to select the “sound card.” Use up and down arrows and press Enter.

 Press F4 to set the Capture level. Use up arrow to set level to the max or fairly high.

Even if you crank up the gain to maximum, the input might be muted. Notice the “MM” here:

This means the input is muted. Press the “M” key to unmute. You might not be able to get the audio
level input low enough if Auto Gain Control is enabled on the soundcard input. If you see something like
this:

Be sure the Auto Gain Control shows “MM” which means disabled. If it shows “00,” select it with the
right/left arrow keys and press the “M” key so it displays “MM."

Raspberry Pi APRS Page 29

Did you run apt-get and rpi-update to get the latest software and firmware? After many months of
aggravation, it finally worked right after an update mid October 2013.

8.1 Before that time…

The SignaLink USB worked OK but I couldn’t get a cheap USB audio adapter to operate properly.

The same USB audio adapter worked fine on Microsoft Windows. It worked fine with Ubuntu Linux on a
regular PC. It was a miserable failure on the Raspberry Pi.

Every 100 seconds, there was a debugging message similar to these in green:

ADEVICE0: Sample rate approx. 39.2 k, 0 errors, audio level CH0 …
ADEVICE0: Sample rate approx. 39.8 k, 0 errors, audio level CH0 …
ADEVICE0: Sample rate approx. 39.5 k, 0 errors, audio level CH0 …

It reveals that the audio input system was providing less than 4000000 samples during a period of 100
seconds. We expect this to be close to 4410000 for the 44.1 kHz sample rate. Instead we find it is about
10% lower than expected. With the sample rate that far off, or 10% of the audio samples getting lost
somewhere, nothing gets decoded. If no signals are decoded, look for these messages for a clue.

The USB audio device was fine on Windows and Ubunu Linux on a regular PC, so it was probably a
software driver issue. After the most recent software/firmware update, it’s now fine. The messages
every 100 seconds show the expected number of audio samples for that time period.

If you can’t copy any signals, make sure you have software/firmware no earlier than mid October 2013,
crank up the audio input level, and then look for the debug messages every 100 seconds.

8.2 USB Hubs

Avoid putting a USB hub between the Raspberry Pi and the USB Audio adapter. I’ve received reports
that exactly the same configuration works fine with the direct connection and a significant number of
audio samples are lost when going through a hub. With direct connection this was observed:

ADEVICE0: Sample rate approx. 44.1 k, 0 errors, audio level CH0 …

With the hub in the middle, numbers like this were seen:

ADEVICE0: Sample rate approx. 42.7 k, 0 errors, audio level CH0 …
ADEVICE0: Sample rate approx. 42.8 k, 0 errors, audio level CH0 …

Some complain about these annoying messages but they provide valuable debugging information.

Raspberry Pi APRS Page 30

8.3 Use with AX25 kissattach

Sometimes kissattach has an issue with the Dire Wolf pseudo terminal. This shows up most often on
Raspbian but sometimes occurs with other versions of Linux.

kissattach: Error setting line discipline: TIOCSETD: Device or resource busy

Are you sure you have enabled MKISS support in the kernel

or, if you made it a module, that the module is loaded?

Consult the Linux AX25 section of the User Guide for more details and work-arounds.

