
Raspberry Pi APRS Tracker

Version 1.3 – Beta Test – February 2016

The Linux version of Dire Wolf can be used as a tracker by enabling an optional feature to access GPS
data. This is not enabled by default because most systems probably won’t have the necessary files
installed.

This document is targeted specifically for the Raspberry Pi. Other than the details about the serial port,
everything else should be applicable to other Linux systems.

First install Dire Wolf as detailed in the other Raspberry Pi APRS document and make sure it is working
properly before enabling this additional feature.

Step 1: Install the GPS support software.

There are three parts to this:

 gpsd daemon which communicates with the GPS receiver. libgps20 should also be selected
automatically.

sudo apt-get install gpsd

 Test programs.

sudo apt-get install gpsd-clients python-gps

 Other files for application development. (e.g. /usr/include/gps.h)

sudo apt-get install libgps-dev

Step 2: Connect GPS receiver.

There are different ways to attach a GPS receiver.

 The easy way is to use one with a USB interface. Plug it in and it should show up with a device
name like /dev/ttyACM0. You can see that it is working by simply typing:

cat /dev/ttyACM0

This one is dirt cheap and very sensitive. It will pick up signals indoors where other GPS
receivers won’t. It is advertised as also being capable of receiving GLONASS satellites but I
spent a considerable amount of time with the configuration software and couldn’t select
GLONASS reception.

http://www.amazon.com/gp/product/B00NWEEWW8/

 A GPS module with a 3.3 volt logic level interface can be connected directly to the Raspberry Pi’s
UART. Additional configuration steps must be taken to disable console output to the serial port.
In this case, the device name is /dev/ttyAMA0.

 Complete instructions can be found here:

 http://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi/introduction

When using the UART, be sure to edit two files as described in the reference above.

 /boot/cmdline.txt -- change from:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1
root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

to: (remove part in red above mentioning ttyAMA0)

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4
elevator=deadline rootwait

 /etc/inittab -- change from:

#Spawn a getty on Raspberry Pi serial line
T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

to: (comment out one line)

#Spawn a getty on Raspberry Pi serial line
#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

 RS-232 interface

This is similar to the previous step except you need to add a logic level to RS-232 level converter.

WARNING: Do not attempt to connect a GPS receiver with RS-232 voltage levels
directly to the Raspberry Pi GPIO pins. It will probably destroy your Raspberry Pi. An
RS-232 to 3.3v logic converter, must be used.

The SparkFun MAX3232 Breakout BOB-11189, https://www.sparkfun.com/products/11189, can
be wired as shown below.

http://www.amazon.com/gp/product/B00NWEEWW8/
http://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi/introduction
https://www.sparkfun.com/products/11189

5 volts, to power the GPS, is supplied through pin 4. This is the same convention commonly
used by other trackers such as OpenTrack and Tiny Trak4 so the same GPS receiver should be
interchangeable between them.

It is also possible to obtain the RS-232 level converter and connector preassembled as a single
unit. Something like the NKC Electronics 0609456348584
http://www.amazon.com/dp/B0088SNIOQ/ref=dra_a_cs_ss_hn_it_P1250_1000 looks like it
would be suitable but I haven’t actually tried it. Just be sure it has a male connector, is wired as
DTE, and the level converter chip is capable of 3.3 volt operation. I’d like to hear from anyone
who tried this specific item.

Reboot the system. (Type “sudo reboot.”)

Start up the gpsd daemon with the appropriate device name:

sudo killall gpsd

sudo gpsd /dev/ttyACM0 -F /var/run/gpsd.sock

or
sudo killall gpsd

sudo gpsd /dev/ttyAMA0 -F /var/run/gpsd.sock

For testing you can run either “cgps -s” (text only) or “xgps” (with graphical display of satellite
positions). Be sure that you are correctly receiving your location from the satellites.

If you run into problems, this troubleshooting information might be helpful.
http://catb.org/gpsd/troubleshooting.html

http://www.amazon.com/dp/B0088SNIOQ/ref=dra_a_cs_ss_hn_it_P1250_1000
http://catb.org/gpsd/troubleshooting.html

Step 3: Configure for automatic start up on reboot.

The one thing left out of the instructions from Ada Fruit is automatic start up on reboot. Run this
command and answer the questions:

 sudo dpkg-reconfigure gpsd

Use “-n” when it asks for options.

Step 4: Optionally set clock from GPS receiver.

The RPi does not have a battery powered real time clock. When it is powered up, it doesn’t know the
current time and date. This is usually obtained from an NTP server over the network. A mobile tracking
device probably won’t have reliable Internet access. The system time can be set from your GPS receiver.

Edit /etc/ntp.conf and add lines like this:

server 127.127.28.0 4

fudge 127.127.28.0 time1 0.340 refid GPS

server 127.127.28.1 prefer

fudge 127.127.28.1 refid GPS1

The fudge factor is to compensate for latency of communication over a slow serial port. The number
above seems about right for a 4800 baud serial port. For the USB model, around 0.050 is good.

Restart the ntp daemon:

sudo /etc/init.d/ntp restart

After waiting a little while, you can tell if it is working by using the “ntpq -p” command. When obtaining
time from Internet NTP servers, you will see something resembling this:

 remote refid st t when poll reach delay offset jitter

==

*tock.usshc.com .GPS. 1 u 46 64 377 47.884 18.724 64.903

+estatico.iloves 216.129.104.26 3 u 41 64 377 94.824 18.614 66.610

+79.132.237.6.st 193.190.230.65 2 u 10 64 377 117.697 17.355 50.584

+sisdb01.muskego 173.255.240.184 3 u 7 64 377 44.962 19.065 35.800

The lines with * and + at the beginning indicate time sources considered to be good.

When obtaining time from your GPS, it will look more like this:

 remote refid st t when poll reach delay offset jitter

==

+96.44.142.5 18.26.4.105 2 u 46 64 17 69.485 -0.346 61.541

+ec2-54-235-96-1 152.2.133.53 2 u 43 64 17 27.297 4.169 32.766

*lithium.constan 128.4.1.1 2 u 46 64 17 16.853 -1.192 24.474

-50.7.0.66 128.138.141.172 2 u 42 64 17 39.321 5.043 0.575

*SHM(0) .GPS. 0 l 43 64 377 0.000 2.589 4.256

 SHM(1) .GPS1. 0 l - 64 0 0.000 0.000 0.000

Notice how the line with SHM(0) .GPS. has * in front of it.

More detailed information can be found here: http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html

Step 5: Rebuild Dire Wolf with support for GPSD.

Go to the source file directory. The exact name will vary depending on version. For example:

cd /home/pi/direwolf-1.3

Rebuild:

make clean

make

Near the end you should see a message the following. If you get a similar message containing “NOT,” go
back and double check your steps for installing gpsd and libgps-dev.

This includes support for gpsd.

Finally install it:

sudo make install

Step 6: Configure beaconing.

First you must modify your configuration file to use gpsd. Add a line like this:

GPSD

The TBEACON configuration command is much like PBEACON and OBEACON except it takes the location,
altitude, speed, and direction from the GPS receiver.

TBEACON EVERY=4 SYMBOL=car

That example will transmit at a set interval, every 4 minutes. It might be too infrequent for a vehicle
moving quickly. It might generate too many redundant transmissions for something sitting still.
SmartBeaconingTM can be used to adjust the timing based on speed and changes in direction. It’s the
same technique used by Kenwood, Yaesu/Standard, and in many other tracker applications. A
configuration option like this will override any fixed interval in specified in TBEACON.

http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html

SMARTBEACONING 60 2:00 5 15:00 0:15 30 255

What do the numbers mean?

 For speeds above 60 MPH, a beacon will be sent every 2 minutes.

 For speeds below 5 MPH, a beacon will be sent every 15 minutes.

 For speeds in between, a rate proportionally in between will be used.

Additional beacons will be sent more frequently when direction changes significantly.

 Send no more frequently than 15 seconds apart.

 Send if direction has changed more than 30 degrees at high speed.

 Requires sharper turns at lower speeds.

More details can be found in these references or just Google for APRS SmartBeaconing to find many
discussions and recommendations.

http://www.hamhud.net/hh2/smartbeacon.html

http://info.aprs.net/index.php?title=SmartBeaconing

Troubleshooting

1. Build errors.

If you see compiling or linking errors, mentioning missing gps.h or libgps, you didn’t install the GPS
software in Step 1.

2. No or erratic GPS data.

Try running “cgps -s” (text output) or “xgps” to look at GPS data.

Use “-d gg” command line option to observe information coming from GPS.

3. Unexpected tracker beacon behavior.

Use “-d t” option on direwolf command for tracker position debugging information.

Use “-d tt” option to include SmartBeaconing details.

Use “-d ttt” option, along with the logging option, to send tracker beacon transmissions to the log file
with fake channel 999.

http://www.hamhud.net/hh2/smartbeacon.html
http://info.aprs.net/index.php?title=SmartBeaconing

You could test the behavior of the SmartBeaconing algorithm, without actually transmitting over the
radio, by logging to a file, converting log file with log2gpx, and displaying it on a map.

