// // This file is part of Dire Wolf, an amateur radio packet TNC. // // Copyright (C) 2011, 2014, 2015 John Langner, WB2OSZ // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // /*------------------------------------------------------------------ * * Module: gen_tone.c * * Purpose: Convert bits to AFSK for writing to .WAV sound file * or a sound device. * * *---------------------------------------------------------------*/ #include #include #include #include #include #include #include "direwolf.h" #include "audio.h" #include "gen_tone.h" #include "textcolor.h" #include "fsk_demod_state.h" /* for MAX_FILTER_SIZE which might be overly generous for here. */ /* but safe if we use same size as for receive. */ #include "dsp.h" // Properties of the digitized sound stream & modem. static struct audio_s *save_audio_config_p; /* * 8 bit samples are unsigned bytes in range of 0 .. 255. * * 16 bit samples are signed short in range of -32768 .. +32767. */ /* Constants after initialization. */ #define TICKS_PER_CYCLE ( 256.0 * 256.0 * 256.0 * 256.0 ) static int ticks_per_sample[MAX_CHANS]; /* Same for both channels of same soundcard */ /* because they have same sample rate */ /* but less confusing to have for each channel. */ static int ticks_per_bit[MAX_CHANS]; static int f1_change_per_sample[MAX_CHANS]; static int f2_change_per_sample[MAX_CHANS]; static short sine_table[256]; /* Accumulators. */ static unsigned int tone_phase[MAX_CHANS]; // Phase accumulator for tone generation. // Upper bits are used as index into sine table. static int bit_len_acc[MAX_CHANS]; // To accumulate fractional samples per bit. static int lfsr[MAX_CHANS]; // Shift register for scrambler. /* * The K9NG/G3RUH output originally took a very simple and lazy approach. * We simply generated a square wave with + or - the desired amplitude. * This has a couple undesirable properties. * * - Transmitting a square wave would splatter into adjacent * channels of the transmitter doesn't limit the bandwidth. * * - The usual sample rate of 44100 is not a multiple of the * baud rate so jitter would be added to the zero crossings. * * Starting in version 1.2, we try to overcome these issues by using * a higher sample rate, low pass filtering, and down sampling. * * What sort of low pass filter would be appropriate? Intuitively, * we would expect a cutoff frequency somewhere between baud/2 and baud. * The current values were found with a small amount of trial and * error for best results. Future improvement is certainly possible. */ /* * For low pass filtering of 9600 baud data. */ /* Add sample to buffer and shift the rest down. */ // TODO: Can we have one copy of these in dsp.h? static inline void push_sample (float val, float *buff, int size) { memmove(buff+1,buff,(size-1)*sizeof(float)); buff[0] = val; } /* FIR filter kernel. */ static inline float convolve (const float *data, const float *filter, int filter_size) { float sum = 0; int j; for (j=0; jachan[chan].valid) { int a = ACHAN2ADEV(chan); ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5); f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); f2_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].space_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); tone_phase[chan] = 0; bit_len_acc[chan] = 0; lfsr[chan] = 0; } } for (j=0; j<256; j++) { double a; int s; a = ((double)(j) / 256.0) * (2 * M_PI); s = (int) (sin(a) * 32767 * amp / 100.0); /* 16 bit sound sample must fit in range of -32768 .. +32767. */ if (s < -32768) { text_color_set(DW_COLOR_ERROR); dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n"); s = -32768; } else if (s > 32767) { text_color_set(DW_COLOR_ERROR); dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n"); s = 32767; } sine_table[j] = s; } /* * Low pass filter for 9600 baud. */ for (chan = 0; chan < MAX_CHANS; chan++) { if (audio_config_p->achan[chan].valid && (audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE || audio_config_p->achan[chan].modem_type == MODEM_BASEBAND)) { int a = ACHAN2ADEV(chan); int samples_per_sec; /* Might be scaled up! */ int baud; /* These numbers were by trial and error. Need more investigation here. */ float filter_len_bits = 88 * 9600.0 / (44100.0 * 2.0); /* Filter length in number of data bits. */ /* Currently 9.58 */ float lpf_baud = 0.8; /* Lowpass cutoff freq as fraction of baud rate */ float fc; /* Cutoff frequency as fraction of sampling frequency. */ samples_per_sec = audio_config_p->adev[a].samples_per_sec * UPSAMPLE; baud = audio_config_p->achan[chan].baud; ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)samples_per_sec ) + 0.5); ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)baud ) + 0.5); lp_filter_size[chan] = (int) (( filter_len_bits * (float)samples_per_sec / baud) + 0.5); if (lp_filter_size[chan] < 10) { text_color_set(DW_COLOR_DEBUG); dw_printf ("gen_tone_init: unexpected, chan %d, lp_filter_size %d < 10\n", chan, lp_filter_size[chan]); lp_filter_size[chan] = 10; } else if (lp_filter_size[chan] > MAX_FILTER_SIZE) { text_color_set(DW_COLOR_DEBUG); dw_printf ("gen_tone_init: unexpected, chan %d, lp_filter_size %d > %d\n", chan, lp_filter_size[chan], MAX_FILTER_SIZE); lp_filter_size[chan] = MAX_FILTER_SIZE; } fc = (float)baud * lpf_baud / (float)samples_per_sec; //text_color_set(DW_COLOR_DEBUG); //dw_printf ("gen_tone_init: chan %d, call gen_lowpass(fc=%.2f, , size=%d, )\n", chan, fc, lp_filter_size[chan]); gen_lowpass (fc, lp_filter[chan], lp_filter_size[chan], BP_WINDOW_HAMMING); } } return (0); } /* end gen_tone_init */ /*------------------------------------------------------------------- * * Name: gen_tone_put_bit * * Purpose: Generate tone of proper duration for one data bit. * * Inputs: chan - Audio channel, 0 = first. * * dat - 0 for f1, 1 for f2. * * -1 inserts half bit to test data * recovery PLL. * * Assumption: fp is open to a file for write. * *--------------------------------------------------------------------*/ void tone_gen_put_bit (int chan, int dat) { int a = ACHAN2ADEV(chan); /* device for channel. */ assert (save_audio_config_p->achan[chan].valid); if (dat < 0) { /* Hack to test receive PLL recovery. */ bit_len_acc[chan] -= ticks_per_bit[chan]; dat = 0; } if (save_audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE) { int x; x = (dat ^ (lfsr[chan] >> 16) ^ (lfsr[chan] >> 11)) & 1; lfsr[chan] = (lfsr[chan] << 1) | (x & 1); dat = x; } do { if (save_audio_config_p->achan[chan].modem_type == MODEM_AFSK) { int sam; tone_phase[chan] += dat ? f2_change_per_sample[chan] : f1_change_per_sample[chan]; sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; gen_tone_put_sample (chan, a, sam); } else { float fsam = dat ? amp16bit : (-amp16bit); /* version 1.2 - added a low pass filter instead of square wave out. */ push_sample (fsam, raw[chan], lp_filter_size[chan]); resample[chan]++; if (resample[chan] >= UPSAMPLE) { int sam; sam = (int) convolve (raw[chan], lp_filter[chan], lp_filter_size[chan]); resample[chan] = 0; gen_tone_put_sample (chan, a, sam); } } /* Enough for the bit time? */ bit_len_acc[chan] += ticks_per_sample[chan]; } while (bit_len_acc[chan] < ticks_per_bit[chan]); bit_len_acc[chan] -= ticks_per_bit[chan]; } void gen_tone_put_sample (int chan, int a, int sam) { /* Ship out an audio sample. */ assert (save_audio_config_p->adev[a].num_channels == 1 || save_audio_config_p->adev[a].num_channels == 2); /* Generalize to allow 8 bits someday? */ assert (save_audio_config_p->adev[a].bits_per_sample == 16); // TODO: Should print message telling user to reduce output level. if (sam < -32767) sam = -32767; else if (sam > 32767) sam = 32767; if (save_audio_config_p->adev[a].num_channels == 1) { /* Mono */ audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); } else { if (chan == ADEVFIRSTCHAN(a)) { /* Stereo, left channel. */ audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); audio_put (a, 0); audio_put (a, 0); } else { /* Stereo, right channel. */ audio_put (a, 0); audio_put (a, 0); audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); } } } /*------------------------------------------------------------------- * * Name: main * * Purpose: Quick test program for above. * * Description: Compile like this for unit test: * * gcc -Wall -DMAIN -o gen_tone_test gen_tone.c audio.c textcolor.c * * gcc -Wall -DMAIN -o gen_tone_test.exe gen_tone.c audio_win.c textcolor.c -lwinmm * *--------------------------------------------------------------------*/ #if MAIN int main () { int n; int chan1 = 0; int chan2 = 1; int r; struct audio_s my_audio_config; /* to sound card */ /* one channel. 2 times: one second of each tone. */ memset (&my_audio_config, 0, sizeof(my_audio_config)); strlcpy (my_audio_config.adev[0].adevice_in, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_in)); strlcpy (my_audio_config.adev[0].adevice_out, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_out)); audio_open (&my_audio_config); gen_tone_init (&my_audio_config, 100); for (r=0; r<2; r++) { for (n=0; n