//#define DEBUG 1
//#define DEBUG2 1
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011, 2014, 2015, 2016 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
/*------------------------------------------------------------------
*
* Module: gen_tone.c
*
* Purpose: Convert bits to AFSK for writing to .WAV sound file
* or a sound device.
*
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include
#include
#include
#include
#include
#include
#include "audio.h"
#include "gen_tone.h"
#include "textcolor.h"
#include "fsk_demod_state.h" /* for MAX_FILTER_SIZE which might be overly generous for here. */
/* but safe if we use same size as for receive. */
#include "dsp.h"
// Properties of the digitized sound stream & modem.
static struct audio_s *save_audio_config_p = NULL;
/*
* 8 bit samples are unsigned bytes in range of 0 .. 255.
*
* 16 bit samples are signed short in range of -32768 .. +32767.
*/
/* Constants after initialization. */
#define TICKS_PER_CYCLE ( 256.0 * 256.0 * 256.0 * 256.0 )
static int ticks_per_sample[MAX_CHANS]; /* Same for both channels of same soundcard */
/* because they have same sample rate */
/* but less confusing to have for each channel. */
static int ticks_per_bit[MAX_CHANS];
static int f1_change_per_sample[MAX_CHANS];
static int f2_change_per_sample[MAX_CHANS];
static short sine_table[256];
/* Accumulators. */
static unsigned int tone_phase[MAX_CHANS]; // Phase accumulator for tone generation.
// Upper bits are used as index into sine table.
#define PHASE_SHIFT_180 ( 128u << 24 )
#define PHASE_SHIFT_90 ( 64u << 24 )
#define PHASE_SHIFT_45 ( 32u << 24 )
static int bit_len_acc[MAX_CHANS]; // To accumulate fractional samples per bit.
static int lfsr[MAX_CHANS]; // Shift register for scrambler.
static int bit_count[MAX_CHANS]; // Counter incremented for each bit transmitted
// on the channel. This is only used for QPSK.
// The LSB determines if we save the bit until
// next time, or send this one with the previously saved.
// The LSB+1 position determines if we add an
// extra 180 degrees to the phase to compensate
// for having 1.5 carrier cycles per symbol time.
// For 8PSK, it has a different meaning. It is the
// number of bits in 'save_bit' so we can accumulate
// three for each symbol.
static int save_bit[MAX_CHANS];
/*
* The K9NG/G3RUH output originally took a very simple and lazy approach.
* We simply generated a square wave with + or - the desired amplitude.
* This has a couple undesirable properties.
*
* - Transmitting a square wave would splatter into adjacent
* channels of the transmitter doesn't limit the bandwidth.
*
* - The usual sample rate of 44100 is not a multiple of the
* baud rate so jitter would be added to the zero crossings.
*
* Starting in version 1.2, we try to overcome these issues by using
* a higher sample rate, low pass filtering, and down sampling.
*
* What sort of low pass filter would be appropriate? Intuitively,
* we would expect a cutoff frequency somewhere between baud/2 and baud.
* The current values were found with a small amount of trial and
* error for best results. Future improvement is certainly possible.
*/
/*
* For low pass filtering of 9600 baud data.
*/
/* Add sample to buffer and shift the rest down. */
// TODO: Can we have one copy of these in dsp.h?
static inline void push_sample (float val, float *buff, int size)
{
memmove(buff+1,buff,(size-1)*sizeof(float));
buff[0] = val;
}
/* FIR filter kernel. */
static inline float convolve (const float *data, const float *filter, int filter_size)
{
float sum = 0;
int j;
for (j=0; jachan[chan].valid) {
int a = ACHAN2ADEV(chan);
#if DEBUG
text_color_set(DW_COLOR_DEBUG);
dw_printf ("gen_tone_init: chan=%d, modem_type=%d, bps=%d, samples_per_sec=%d\n",
chan,
save_audio_config_p->achan[chan].modem_type,
audio_config_p->achan[chan].baud,
audio_config_p->adev[a].samples_per_sec);
#endif
tone_phase[chan] = 0;
bit_len_acc[chan] = 0;
lfsr[chan] = 0;
ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
// The terminology is all wrong here. Didn't matter with 1200 and 9600.
// The config speed should be bits per second rather than baud.
// ticks_per_bit should be ticks_per_symbol.
switch (save_audio_config_p->achan[chan].modem_type) {
case MODEM_QPSK:
audio_config_p->achan[chan].mark_freq = 1800;
audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used.
// symbol time is 1 / (half of bps)
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud * 0.5)) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used.
tone_phase[chan] = PHASE_SHIFT_45; // Just to mimic first attempt.
break;
case MODEM_8PSK:
audio_config_p->achan[chan].mark_freq = 1800;
audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used.
// symbol time is 1 / (third of bps)
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud / 3.)) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used.
break;
default:
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].space_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
break;
}
}
}
for (j=0; j<256; j++) {
double a;
int s;
a = ((double)(j) / 256.0) * (2 * M_PI);
s = (int) (sin(a) * 32767 * amp / 100.0);
/* 16 bit sound sample must fit in range of -32768 .. +32767. */
if (s < -32768) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n");
s = -32768;
}
else if (s > 32767) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n");
s = 32767;
}
sine_table[j] = s;
}
/*
* Low pass filter for 9600 baud.
*/
for (chan = 0; chan < MAX_CHANS; chan++) {
if (audio_config_p->achan[chan].valid &&
(audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE
|| audio_config_p->achan[chan].modem_type == MODEM_BASEBAND)) {
int a = ACHAN2ADEV(chan);
int samples_per_sec; /* Might be scaled up! */
int baud;
/* These numbers were by trial and error. Need more investigation here. */
float filter_len_bits = 88 * 9600.0 / (44100.0 * 2.0);
/* Filter length in number of data bits. */
/* Currently 9.58 */
float lpf_baud = 0.8; /* Lowpass cutoff freq as fraction of baud rate */
float fc; /* Cutoff frequency as fraction of sampling frequency. */
/*
* Normally, we want to generate the same thing whether sending over the air
* or putting it into a file for other testing.
* (There is an important exception. gen_packets can introduce random noise.)
* In this case, we want more aggressive low pass filtering so it looks more like
* what we see coming out of a receiver.
* Specifically, single bits of the same state have considerably reduced amplitude
* below several same values in a row.
*/
if (gen_packets) {
filter_len_bits = 4;
lpf_baud = 0.55; /* Lowpass cutoff freq as fraction of baud rate */
}
samples_per_sec = audio_config_p->adev[a].samples_per_sec * UPSAMPLE;
baud = audio_config_p->achan[chan].baud;
ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)samples_per_sec ) + 0.5);
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)baud ) + 0.5);
lp_filter_size[chan] = (int) (( filter_len_bits * (float)samples_per_sec / baud) + 0.5);
if (lp_filter_size[chan] < 10) {
text_color_set(DW_COLOR_DEBUG);
dw_printf ("gen_tone_init: unexpected, chan %d, lp_filter_size %d < 10\n", chan, lp_filter_size[chan]);
lp_filter_size[chan] = 10;
}
else if (lp_filter_size[chan] > MAX_FILTER_SIZE) {
text_color_set(DW_COLOR_DEBUG);
dw_printf ("gen_tone_init: unexpected, chan %d, lp_filter_size %d > %d\n", chan, lp_filter_size[chan], MAX_FILTER_SIZE);
lp_filter_size[chan] = MAX_FILTER_SIZE;
}
fc = (float)baud * lpf_baud / (float)samples_per_sec;
//text_color_set(DW_COLOR_DEBUG);
//dw_printf ("gen_tone_init: chan %d, call gen_lowpass(fc=%.2f, , size=%d, )\n", chan, fc, lp_filter_size[chan]);
gen_lowpass (fc, lp_filter[chan], lp_filter_size[chan], BP_WINDOW_HAMMING);
}
}
return (0);
} /* end gen_tone_init */
/*-------------------------------------------------------------------
*
* Name: tone_gen_put_bit
*
* Purpose: Generate tone of proper duration for one data bit.
*
* Inputs: chan - Audio channel, 0 = first.
*
* dat - 0 for f1, 1 for f2.
*
* -1 inserts half bit to test data
* recovery PLL.
*
* Assumption: fp is open to a file for write.
*
* Version 1.4: Attempt to implement 2400 and 4800 bps PSK modes.
*
*--------------------------------------------------------------------*/
static const int gray2phase_v26[4] = {0, 1, 3, 2};
static const int gray2phase_v27[8] = {1, 0, 2, 3, 6, 7, 5, 4};
void tone_gen_put_bit (int chan, int dat)
{
int a = ACHAN2ADEV(chan); /* device for channel. */
assert (save_audio_config_p != NULL);
assert (save_audio_config_p->achan[chan].valid);
if (dat < 0) {
/* Hack to test receive PLL recovery. */
bit_len_acc[chan] -= ticks_per_bit[chan];
dat = 0;
}
if (save_audio_config_p->achan[chan].modem_type == MODEM_QPSK) {
int dibit;
int symbol;
dat &= 1; // Keep only LSB to be extra safe.
if ( ! (bit_count[chan] & 1)) {
save_bit[chan] = dat;
bit_count[chan]++;
return;
}
// All zero bits should give us steady 1800 Hz.
// All one bits should flip phase by 180 degrees each time.
dibit = (save_bit[chan] << 1) | dat;
symbol = gray2phase_v26[dibit];
tone_phase[chan] += symbol * PHASE_SHIFT_90;
bit_count[chan]++;
}
if (save_audio_config_p->achan[chan].modem_type == MODEM_8PSK) {
int tribit;
int symbol;
dat &= 1; // Keep only LSB to be extra safe.
if (bit_count[chan] < 2) {
save_bit[chan] = (save_bit[chan] << 1) | dat;
bit_count[chan]++;
return;
}
// The bit pattern 001 should give us steady 1800 Hz.
// All one bits should flip phase by 180 degrees each time.
tribit = (save_bit[chan] << 1) | dat;
symbol = gray2phase_v27[tribit];
tone_phase[chan] += symbol * PHASE_SHIFT_45;
save_bit[chan] = 0;
bit_count[chan] = 0;
}
if (save_audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE) {
int x;
x = (dat ^ (lfsr[chan] >> 16) ^ (lfsr[chan] >> 11)) & 1;
lfsr[chan] = (lfsr[chan] << 1) | (x & 1);
dat = x;
}
do { /* until enough audio samples for this symbol. */
int sam;
float fsam;
switch (save_audio_config_p->achan[chan].modem_type) {
case MODEM_AFSK:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d AFSK\n", __LINE__);
#endif
tone_phase[chan] += dat ? f2_change_per_sample[chan] : f1_change_per_sample[chan];
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_QPSK:
case MODEM_8PSK:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d PSK\n", __LINE__);
#endif
tone_phase[chan] += f1_change_per_sample[chan];
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_BASEBAND:
case MODEM_SCRAMBLE:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d SCR\n", __LINE__);
#endif
fsam = dat ? amp16bit : (-amp16bit);
/* version 1.2 - added a low pass filter instead of square wave out. */
push_sample (fsam, raw[chan], lp_filter_size[chan]);
resample[chan]++;
if (resample[chan] >= UPSAMPLE) {
sam = (int) convolve (raw[chan], lp_filter[chan], lp_filter_size[chan]);
resample[chan] = 0;
gen_tone_put_sample (chan, a, sam);
}
break;
default:
text_color_set(DW_COLOR_ERROR);
dw_printf ("INTERNAL ERROR: %s %d achan[%d].modem_type = %d\n",
__FILE__, __LINE__, chan, save_audio_config_p->achan[chan].modem_type);
exit (EXIT_FAILURE);
}
/* Enough for the bit time? */
bit_len_acc[chan] += ticks_per_sample[chan];
} while (bit_len_acc[chan] < ticks_per_bit[chan]);
bit_len_acc[chan] -= ticks_per_bit[chan];
}
void gen_tone_put_sample (int chan, int a, int sam) {
/* Ship out an audio sample. */
/* 16 bit is signed, little endian, range -32768 .. +32767 */
/* 8 bit is unsigned, range 0 .. 255 */
assert (save_audio_config_p != NULL);
assert (save_audio_config_p->adev[a].num_channels == 1 || save_audio_config_p->adev[a].num_channels == 2);
assert (save_audio_config_p->adev[a].bits_per_sample == 16 || save_audio_config_p->adev[a].bits_per_sample == 8);
// TODO: Should print message telling user to reduce output level.
if (sam < -32767) sam = -32767;
else if (sam > 32767) sam = 32767;
if (save_audio_config_p->adev[a].num_channels == 1) {
/* Mono */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, ((sam+32768) >> 8) & 0xff);
}
else {
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
}
}
else {
if (chan == ADEVFIRSTCHAN(a)) {
/* Stereo, left channel. */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, ((sam+32768) >> 8) & 0xff);
audio_put (a, 0);
}
else {
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
audio_put (a, 0);
audio_put (a, 0);
}
}
else {
/* Stereo, right channel. */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, 0);
audio_put (a, ((sam+32768) >> 8) & 0xff);
}
else {
audio_put (a, 0);
audio_put (a, 0);
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
}
}
}
}
/*-------------------------------------------------------------------
*
* Name: main
*
* Purpose: Quick test program for above.
*
* Description: Compile like this for unit test:
*
* gcc -Wall -DMAIN -o gen_tone_test gen_tone.c audio.c textcolor.c
*
* gcc -Wall -DMAIN -o gen_tone_test.exe gen_tone.c audio_win.c textcolor.c -lwinmm
*
*--------------------------------------------------------------------*/
#if MAIN
int main ()
{
int n;
int chan1 = 0;
int chan2 = 1;
int r;
struct audio_s my_audio_config;
/* to sound card */
/* one channel. 2 times: one second of each tone. */
memset (&my_audio_config, 0, sizeof(my_audio_config));
strlcpy (my_audio_config.adev[0].adevice_in, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_in));
strlcpy (my_audio_config.adev[0].adevice_out, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_out));
audio_open (&my_audio_config);
gen_tone_init (&my_audio_config, 100);
for (r=0; r<2; r++) {
for (n=0; n