// // This file is part of Dire Wolf, an amateur radio packet TNC. // // Copyright (C) 2011, 2014, 2015, 2016, 2019, 2023 John Langner, WB2OSZ // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // /*------------------------------------------------------------------ * * Module: gen_tone.c * * Purpose: Convert bits to AFSK for writing to .WAV sound file * or a sound device. * * *---------------------------------------------------------------*/ #include "direwolf.h" #include #include #include #include #include #include #include "audio.h" #include "gen_tone.h" #include "textcolor.h" #include "fsk_demod_state.h" /* for MAX_FILTER_SIZE which might be overly generous for here. */ /* but safe if we use same size as for receive. */ #include "dsp.h" // Properties of the digitized sound stream & modem. static struct audio_s *save_audio_config_p = NULL; /* * 8 bit samples are unsigned bytes in range of 0 .. 255. * * 16 bit samples are signed short in range of -32768 .. +32767. */ /* Constants after initialization. */ #define TICKS_PER_CYCLE ( 256.0 * 256.0 * 256.0 * 256.0 ) static int ticks_per_sample[MAX_CHANS]; /* Same for both channels of same soundcard */ /* because they have same sample rate */ /* but less confusing to have for each channel. */ static int ticks_per_bit[MAX_CHANS]; static int f1_change_per_sample[MAX_CHANS]; static int f2_change_per_sample[MAX_CHANS]; static float samples_per_symbol[MAX_CHANS]; static short sine_table[256]; /* Accumulators. */ static unsigned int tone_phase[MAX_CHANS]; // Phase accumulator for tone generation. // Upper bits are used as index into sine table. #define PHASE_SHIFT_180 ( 128u << 24 ) #define PHASE_SHIFT_90 ( 64u << 24 ) #define PHASE_SHIFT_45 ( 32u << 24 ) static int bit_len_acc[MAX_CHANS]; // To accumulate fractional samples per bit. static int lfsr[MAX_CHANS]; // Shift register for scrambler. static int bit_count[MAX_CHANS]; // Counter incremented for each bit transmitted // on the channel. This is only used for QPSK. // The LSB determines if we save the bit until // next time, or send this one with the previously saved. // The LSB+1 position determines if we add an // extra 180 degrees to the phase to compensate // for having 1.5 carrier cycles per symbol time. // For 8PSK, it has a different meaning. It is the // number of bits in 'save_bit' so we can accumulate // three for each symbol. static int save_bit[MAX_CHANS]; static int prev_dat[MAX_CHANS]; // Previous data bit. Used for G3RUH style. /*------------------------------------------------------------------ * * Name: gen_tone_init * * Purpose: Initialize for AFSK tone generation which might * be used for RTTY or amateur packet radio. * * Inputs: audio_config_p - Pointer to modem parameter structure, modem_s. * * The fields we care about are: * * samples_per_sec * baud * mark_freq * space_freq * samples_per_sec * * amp - Signal amplitude on scale of 0 .. 100. * * 100% uses the full 16 bit sample range of +-32k. * * gen_packets - True if being called from "gen_packets" utility * rather than the "direwolf" application. * * Returns: 0 for success. * -1 for failure. * * Description: Calculate various constants for use by the direct digital synthesis * audio tone generation. * *----------------------------------------------------------------*/ static int amp16bit; /* for 9600 baud */ int gen_tone_init (struct audio_s *audio_config_p, int amp, int gen_packets) { int j; int chan = 0; #if DEBUG text_color_set(DW_COLOR_DEBUG); dw_printf ("gen_tone_init ( audio_config_p=%p, amp=%d, gen_packets=%d )\n", audio_config_p, amp, gen_packets); #endif /* * Save away modem parameters for later use. */ save_audio_config_p = audio_config_p; amp16bit = (int)((32767 * amp) / 100); for (chan = 0; chan < MAX_CHANS; chan++) { if (audio_config_p->chan_medium[chan] == MEDIUM_RADIO) { int a = ACHAN2ADEV(chan); #if DEBUG text_color_set(DW_COLOR_DEBUG); dw_printf ("gen_tone_init: chan=%d, modem_type=%d, bps=%d, samples_per_sec=%d\n", chan, save_audio_config_p->achan[chan].modem_type, audio_config_p->achan[chan].baud, audio_config_p->adev[a].samples_per_sec); #endif tone_phase[chan] = 0; bit_len_acc[chan] = 0; lfsr[chan] = 0; ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); // The terminology is all wrong here. Didn't matter with 1200 and 9600. // The config speed should be bits per second rather than baud. // ticks_per_bit should be ticks_per_symbol. switch (save_audio_config_p->achan[chan].modem_type) { case MODEM_QPSK: audio_config_p->achan[chan].mark_freq = 1800; audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used. // symbol time is 1 / (half of bps) ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud * 0.5)) + 0.5); f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used. samples_per_symbol[chan] = 2. * (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud; tone_phase[chan] = PHASE_SHIFT_45; // Just to mimic first attempt. // ??? Why? We are only concerned with the difference // from one symbol to the next. break; case MODEM_8PSK: audio_config_p->achan[chan].mark_freq = 1800; audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used. // symbol time is 1 / (third of bps) ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud / 3.)) + 0.5); f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used. samples_per_symbol[chan] = 3. * (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud; break; case MODEM_BASEBAND: case MODEM_SCRAMBLE: case MODEM_AIS: // Tone is half baud. ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5); f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].baud * 0.5 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); samples_per_symbol[chan] = (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud; break; case MODEM_EAS: // EAS. // TODO: Proper fix would be to use float for baud, mark, space. ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / 520.833333333333 ) + 0.5); samples_per_symbol[chan] = (int)((audio_config_p->adev[a].samples_per_sec / 520.83333) + 0.5); f1_change_per_sample[chan] = (int) ((2083.33333333333 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); f2_change_per_sample[chan] = (int) ((1562.5000000 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); break; default: // AFSK ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5); samples_per_symbol[chan] = (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud; f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); f2_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].space_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5); break; } } } for (j=0; j<256; j++) { double a; int s; a = ((double)(j) / 256.0) * (2 * M_PI); s = (int) (sin(a) * 32767 * amp / 100.0); /* 16 bit sound sample must fit in range of -32768 .. +32767. */ if (s < -32768) { text_color_set(DW_COLOR_ERROR); dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n"); s = -32768; } else if (s > 32767) { text_color_set(DW_COLOR_ERROR); dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n"); s = 32767; } sine_table[j] = s; } return (0); } /* end gen_tone_init */ /*------------------------------------------------------------------- * * Name: tone_gen_put_bit * * Purpose: Generate tone of proper duration for one data bit. * * Inputs: chan - Audio channel, 0 = first. * * dat - 0 for f1, 1 for f2. * * -1 inserts half bit to test data * recovery PLL. * * Assumption: fp is open to a file for write. * * Version 1.4: Attempt to implement 2400 and 4800 bps PSK modes. * * Version 1.6: For G3RUH, rather than generating square wave and low * pass filtering, generate the waveform directly. * This avoids overshoot, ringing, and adding more jitter. * Alternating bits come out has sine wave of baud/2 Hz. * * Version 1.6: MFJ-2400 compatibility for V.26. * *--------------------------------------------------------------------*/ // Interpolate between two values. // My original approximation simply jumped between phases, producing a discontinuity, // and increasing bandwidth. // According to multiple sources, we should transition more gently. // Below see see a rough approximation of: // * A step function, immediately going to new value. // * Linear interpoation. // * Raised cosine. Square root of cosine is also mentioned. // // new - / -- // | / / // | / | // | / / // old ------- / -- // step linear raised cosine // // Inputs are the old (previous value), new value, and a blending control // 0 -> take old value // 1 -> take new value. // inbetween some sort of weighted average. static inline float interpol8 (float oldv, float newv, float bc) { // Step function. //return (newv); // 78 on 11/7 assert (bc >= 0); assert (bc <= 1.1); if (bc < 0) return (oldv); if (bc > 1) return (newv); // Linear interpolation, just for comparison. //return (bc * newv + (1.0f - bc) * oldv); // 39 on 11/7 float rc = 0.5f * (cosf(bc * M_PI - M_PI) + 1.0f); float rrc = bc >= 0.5f ? 0.5f * (sqrtf(fabsf(cosf(bc * M_PI - M_PI))) + 1.0f) : 0.5f * (-sqrtf(fabsf(cosf(bc * M_PI - M_PI))) + 1.0f); (void)rrc; return (rc * newv + (1.0f - bc) * oldv); // 49 on 11/7 //return (rrc * newv + (1.0f - bc) * oldv); // 55 on 11/7 } static const int gray2phase_v26[4] = {0, 1, 3, 2}; static const int gray2phase_v27[8] = {1, 0, 2, 3, 6, 7, 5, 4}; // #define PSKIQ 1 // not ready for prime time yet. #if PSKIQ static int xmit_octant[MAX_CHANS]; // absolute phase in 45 degree units. static int xmit_prev_octant[MAX_CHANS]; // from previous symbol. // For PSK, we generate the final signal by combining fixed frequency cosine and // sine by the following weights. static const float ci[8] = { 1, .7071, 0, -.7071, -1, -.7071, 0, .7071 }; static const float sq[8] = { 0, .7071, 1, .7071, 0, -.7071, -1, -.7071 }; #endif void tone_gen_put_bit (int chan, int dat) { int a = ACHAN2ADEV(chan); /* device for channel. */ assert (save_audio_config_p != NULL); if (save_audio_config_p->chan_medium[chan] != MEDIUM_RADIO) { text_color_set(DW_COLOR_ERROR); dw_printf ("Invalid channel %d for tone generation.\n", chan); return; } if (dat < 0) { /* Hack to test receive PLL recovery. */ bit_len_acc[chan] -= ticks_per_bit[chan]; dat = 0; } // TODO: change to switch instead of if if if if (save_audio_config_p->achan[chan].modem_type == MODEM_QPSK) { int dibit; int symbol; dat &= 1; // Keep only LSB to be extra safe. if ( ! (bit_count[chan] & 1)) { save_bit[chan] = dat; bit_count[chan]++; return; } // All zero bits should give us steady 1800 Hz. // All one bits should flip phase by 180 degrees each time. // For V.26B, add another 45 degrees. // This seems to work a little better. dibit = (save_bit[chan] << 1) | dat; symbol = gray2phase_v26[dibit]; // 0 .. 3 for QPSK. #if PSKIQ // One phase shift unit is 45 degrees. // Remember what it was last time and calculate new. // values 0 .. 7. xmit_prev_octant[chan] = xmit_octant[chan]; xmit_octant[chan] += symbol * 2; if (save_audio_config_p->achan[chan].v26_alternative == V26_B) { xmit_octant[chan] += 1; } xmit_octant[chan] &= 0x7; #else tone_phase[chan] += symbol * PHASE_SHIFT_90; if (save_audio_config_p->achan[chan].v26_alternative == V26_B) { tone_phase[chan] += PHASE_SHIFT_45; } #endif bit_count[chan]++; } if (save_audio_config_p->achan[chan].modem_type == MODEM_8PSK) { int tribit; int symbol; dat &= 1; // Keep only LSB to be extra safe. if (bit_count[chan] < 2) { save_bit[chan] = (save_bit[chan] << 1) | dat; bit_count[chan]++; return; } // The bit pattern 001 should give us steady 1800 Hz. // All one bits should flip phase by 180 degrees each time. tribit = (save_bit[chan] << 1) | dat; symbol = gray2phase_v27[tribit]; tone_phase[chan] += symbol * PHASE_SHIFT_45; save_bit[chan] = 0; bit_count[chan] = 0; } // Would be logical to have MODEM_BASEBAND for IL2P rather than checking here. But... // That would mean putting in at least 3 places and testing all rather than just one. if (save_audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE && save_audio_config_p->achan[chan].layer2_xmit != LAYER2_IL2P) { int x; x = (dat ^ (lfsr[chan] >> 16) ^ (lfsr[chan] >> 11)) & 1; lfsr[chan] = (lfsr[chan] << 1) | (x & 1); dat = x; } #if PSKIQ int blend = 1; #endif do { /* until enough audio samples for this symbol. */ int sam; switch (save_audio_config_p->achan[chan].modem_type) { case MODEM_AFSK: #if DEBUG2 text_color_set(DW_COLOR_DEBUG); dw_printf ("tone_gen_put_bit %d AFSK\n", __LINE__); #endif // v1.7 reversed. // Previously a data '1' selected the second (usually higher) tone. // It never really mattered before because we were using NRZI. // With the addition of IL2P, we need to be more careful. // A data '1' should be the mark tone. tone_phase[chan] += dat ? f1_change_per_sample[chan] : f2_change_per_sample[chan]; sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; gen_tone_put_sample (chan, a, sam); break; case MODEM_EAS: tone_phase[chan] += dat ? f1_change_per_sample[chan] : f2_change_per_sample[chan]; sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; gen_tone_put_sample (chan, a, sam); break; case MODEM_QPSK: #if DEBUG2 text_color_set(DW_COLOR_DEBUG); dw_printf ("tone_gen_put_bit %d PSK\n", __LINE__); #endif tone_phase[chan] += f1_change_per_sample[chan]; #if PSKIQ #if 1 // blend JWL // remove loop invariant float old_i = ci[xmit_prev_octant[chan]]; float old_q = sq[xmit_prev_octant[chan]]; float new_i = ci[xmit_octant[chan]]; float new_q = sq[xmit_octant[chan]]; float b = blend / samples_per_symbol[chan]; // roughly 0 to 1 blend++; // b = (b - 0.5) * 20 + 0.5; // if (b < 0) b = 0; // if (b > 1) b = 1; // b = b > 0.5; //b = 1; // 78 decoded with this. // only 39 without. //float blended_i = new_i * b + old_i * (1.0f - b); //float blended_q = new_q * b + old_q * (1.0f - b); float blended_i = interpol8 (old_i, new_i, b); float blended_q = interpol8 (old_q, new_q, b); sam = blended_i * sine_table[((tone_phase[chan] - PHASE_SHIFT_90) >> 24) & 0xff] + blended_q * sine_table[(tone_phase[chan] >> 24) & 0xff]; #else // jump sam = ci[xmit_octant[chan]] * sine_table[((tone_phase[chan] - PHASE_SHIFT_90) >> 24) & 0xff] + sq[xmit_octant[chan]] * sine_table[(tone_phase[chan] >> 24) & 0xff]; #endif #else sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; #endif gen_tone_put_sample (chan, a, sam); break; case MODEM_8PSK: #if DEBUG2 text_color_set(DW_COLOR_DEBUG); dw_printf ("tone_gen_put_bit %d PSK\n", __LINE__); #endif tone_phase[chan] += f1_change_per_sample[chan]; sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; gen_tone_put_sample (chan, a, sam); break; case MODEM_BASEBAND: case MODEM_SCRAMBLE: case MODEM_AIS: if (dat != prev_dat[chan]) { tone_phase[chan] += f1_change_per_sample[chan]; } else { if (tone_phase[chan] & 0x80000000) tone_phase[chan] = 0xc0000000; // 270 degrees. else tone_phase[chan] = 0x40000000; // 90 degrees. } sam = sine_table[(tone_phase[chan] >> 24) & 0xff]; gen_tone_put_sample (chan, a, sam); break; default: text_color_set(DW_COLOR_ERROR); dw_printf ("INTERNAL ERROR: %s %d achan[%d].modem_type = %d\n", __FILE__, __LINE__, chan, save_audio_config_p->achan[chan].modem_type); exit (EXIT_FAILURE); } /* Enough for the bit time? */ bit_len_acc[chan] += ticks_per_sample[chan]; } while (bit_len_acc[chan] < ticks_per_bit[chan]); bit_len_acc[chan] -= ticks_per_bit[chan]; prev_dat[chan] = dat; // Only needed for G3RUH baseband/scrambled. } /* end tone_gen_put_bit */ void gen_tone_put_sample (int chan, int a, int sam) { /* Ship out an audio sample. */ /* 16 bit is signed, little endian, range -32768 .. +32767 */ /* 8 bit is unsigned, range 0 .. 255 */ assert (save_audio_config_p != NULL); assert (save_audio_config_p->adev[a].num_channels == 1 || save_audio_config_p->adev[a].num_channels == 2); assert (save_audio_config_p->adev[a].bits_per_sample == 16 || save_audio_config_p->adev[a].bits_per_sample == 8); // Bad news if we are clipping and distorting the signal. // We are using the full range. // Too late to change now because everyone would need to recalibrate their // transmit audio level. if (sam < -32767) { text_color_set(DW_COLOR_ERROR); dw_printf ("Warning: Audio sample %d clipped to -32767.\n", sam); sam = -32767; } else if (sam > 32767) { text_color_set(DW_COLOR_ERROR); dw_printf ("Warning: Audio sample %d clipped to +32767.\n", sam); sam = 32767; } if (save_audio_config_p->adev[a].num_channels == 1) { /* Mono */ if (save_audio_config_p->adev[a].bits_per_sample == 8) { audio_put (a, ((sam+32768) >> 8) & 0xff); } else { audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); } } else { if (chan == ADEVFIRSTCHAN(a)) { /* Stereo, left channel. */ if (save_audio_config_p->adev[a].bits_per_sample == 8) { audio_put (a, ((sam+32768) >> 8) & 0xff); audio_put (a, 0); } else { audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); audio_put (a, 0); audio_put (a, 0); } } else { /* Stereo, right channel. */ if (save_audio_config_p->adev[a].bits_per_sample == 8) { audio_put (a, 0); audio_put (a, ((sam+32768) >> 8) & 0xff); } else { audio_put (a, 0); audio_put (a, 0); audio_put (a, sam & 0xff); audio_put (a, (sam >> 8) & 0xff); } } } } void gen_tone_put_quiet_ms (int chan, int time_ms) { int a = ACHAN2ADEV(chan); /* device for channel. */ int sam = 0; int nsamples = (int) ((time_ms * (float)save_audio_config_p->adev[a].samples_per_sec / 1000.) + 0.5); for (int j=0; j